
Property-Based Test Case Generators for Free?

Emanuele De Angelis1, Fabio Fioravanti1, Adrián Palacios2,
Alberto Pettorossi3, and Maurizio Proietti4

1 DEC, University “G. d’Annunzio” of Chieti-Pescara, Italy
{emanuele.deangelis, fabio.fioravanti}@unich.it

2 MiST, DSIC, Polytechnic University of Valencia, Spain, apalacios@dsic.upv.es
3 University of Roma Tor Vergata, Italy, pettorossi@info.uniroma2.it

4 CNR-IASI, Roma, Italy, maurizio.proietti@iasi.cnr.it

Abstract. Property-Based Testing requires the programmer to write
suitable generators, i.e., programs that generate (possibly in a random
way) input values for which the program under test should be run. How-
ever, the process of writing generators is quite a costly, error-prone ac-
tivity. In the context of Property-Based Testing of Erlang programs, we
propose an approach to relieve the programmer from the task of writing
generators. Our approach allows the automatic, efficient generation of
input test values that satisfy a given specification. In particular, we have
considered the case when the input values are data structures satisfy-
ing complex constraints. That generation is performed via the symbolic
execution of the specification using constraint logic programming.

1 Introduction

Over the years, Property-Based Testing (PBT), as proposed by Claessen and
Hughes [8], has been established as one of the favorite methods for testing soft-
ware. The idea behind PBT is as follows: instead of supplying specific inputs,
i.e., test cases, to a program under test, the developer defines properties to be
satisfied by the program inputs and outputs. Then, random inputs are generated
and the program is run with those input values, thereby producing output values
and checking whether or not the input-output pairs satisfy the desired property.
If the output associated with a particular input does not satisfy the property,
the counterexample to the property reveals an undesirable behavior. Then, the
developer can modify the program under test so that the counterexample is no
longer generated. The fact that input values are generated in a random way plays
a key role in the PBT techniques, because randomicity enables the generation of
valid inputs which originally could have escaped the attention of the developer.

QuickCheck [8] is the first tool that implemented Property-Based Testing
and it works for the functional language Haskell. Then, a similar approach has
been followed for various programming languages, and among many others, let
us mention: (i) Erlang [2,27], (ii) Java [22,39], (iii) Scala [33], and (iv) Prolog [1].

? This work has been partially supported by the EU (FEDER) and the Spanish Mini-
sterio de Ciencia, Innovación y Universidades/AEI, grant TIN2016-76843-C4-1-R
and by the Generalitat Valenciana, grant PROMETEO-II/2015/013 (SmartLogic).

2 E. De Angelis et al.

In this paper we will focus on the dynamically typed functional programming
language Erlang and, in particular, we will refer to the PropEr framework [27,30].
Typically, in PropEr the set of valid input data is defined through: (i) a type
specification, and (ii) a filter specification (that is, a constraint), which should
be satisfied by the valid inputs. When working with user-defined types and fil-
ters, the developer must provide a generator, that is, a program that constructs
input data of the given type satisfying the given filter. PropEr supports writing
generators by providing a mechanism for turning type specifications into data
generators, and also providing primitives for constraining data size and assigning
frequencies to guide data generation. However, the task of writing a generator
that satisfies all constraints defined by a filter is left to the developer. Unfortu-
nately, writing and maintaining generators is a time-consuming and error-prone
activity. In particular, hand-written generators may result in the generation of
sets of non-valid inputs or, even worse, sets of inputs which are too restricted.

In this paper we explore an approach that relieves the developer from the task
of writing data generators of valid inputs. We assume that the data generation
task is specified by providing: (i) a data type specification, using the Erlang
language for that purpose, and (ii) a filter specification provided by any boolean-
valued Erlang function. We have constructed a symbolic interpreter, written in
the Constraint Logic Programming (CLP) language [20], which takes the data
type and the filter specification, and automatically generates data of the given
type satisfying the given filter. Our interpreter is symbolic, in the sense that it
is able to run Erlang programs (in particular, the filter functions) on symbolic
values, represented as CLP terms with possibly variable occurrences.

The symbolic interpreter works by exploiting various computational mech-
anisms which are specific to CLP, such as: (i) unification, instead of matching,
which enables the use of predicate definitions for generating terms satisfying
those predicates, (ii) constraint solving, which allows the symbolic computation
of sets of data satisfying given constraints, and (iii) coroutining between the pro-
cess of generating the data structures and the process of applying the filter. By
using the above mechanisms we realize an efficient, automated data generation
process following a constrain-and-generate computation pattern, which first gen-
erates data structure skeletons with constraints on its elements, and then gener-
ates random concrete values satisfying those constraints. Finally, these concrete
data are translated back into inputs for the Erlang program under test.

The paper is structured as follows. In Sect. 2, we recall some basic notions
on the Erlang and CLP programming languages. In Sect. 3, we present the
framework for Property-Based Testing based on PropEr [27]. In Sect. 4, we
show how from any given data type definition, written in the type language of
Erlang, we derive a CLP generator for such data type. In Sect. 5, we describe
our CLP interpreter for a sequential fragment of Erlang. In Sect. 6, we show the
use of coroutining and, in Sect. 7, we present some experimental results obtained
by the ProSyT tool, which implements our PBT technique. Finally, in Sect. 8,
we compare our approach with related work in constraint-based testing.

Property-Based Test Case Generators for Free 3

2 Preliminaries

In this section we present the basic notions of the Erlang and CLP languages.

The Erlang language. Erlang is a concurrent, higher-order, functional pro-
gramming language with dynamic, strong typing [36]. Its concurrency is based
on the Actor model [19] and it allows asynchronous communications among
processes. These features make the Erlang language suitable for distributed,
fault-tolerant, and soft real-time applications. An Erlang program is a sequence
of function definitions of the form: f(X1, . . . , Xn) -> e, where f is the function
name, X1, . . . , Xn are variables, and e is an Erlang expression, whose syntax is
shown in the box below, together with that of values and patterns. For reasons of
simplicity, we have considered a subset of Core Erlang, that is, the intermediate
language to which Erlang programs are translated by the Erlang/OTP compiler
language [12]. This subset, in particular, does not include letrec expressions,
nor commands for raising or catching exceptions, nor primitives for supporting
concurrent computations.

Values 3 v ::= l | c (v1, . . . , vn) | fun (X1, . . . , Xn) -> e

Patterns 3 p ::= p′ when g

p′ ::= l | X | c (X1, . . . , Xn)

Expressions 3 e ::= l | X | f | c (e1, . . . , en) | e0 (e1, . . . , en) | let X = e1 in e

| case e of (p1 -> e1) ; . . . ; (pn -> en) end | fun (X1, . . . , Xn) -> e

In these syntactic definitions: (i) by ‘Values 3 v’ we mean that v (possibly with
subscripts) is a meta-variable ranging over Values, and analogously for Pat-
terns and Expressions, (ii) l ranges over literals (such as integers, floats, atoms,
and the empty list []), (iii) c is either the list constructor [|] or the tuple
constructor { , . . . , }, (iv) X (possibly with subscripts) ranges over variables,
(v) fun (X1, . . . , Xn) -> e denotes an anonymous function (we stipulate that the
free variables in the expression e belong to {X1, . . . , Xn}), (vi) g ranges over
guards, that is, boolean expressions (such as comparisons of terms using =<, ==,
etc.) (vii) f ranges over function names.

The evaluation of an expression is performed in the call-by-value regime and
returns a value. Variables are bound to values via the usual pattern matching
mechanism. In Erlang each variable is bound to a value only once (this feature
is known as single assignment). During the evaluation of a function call, the
patterns of the case-of expression are considered, one after the other, in left-
to-right order. The first pattern for which the pattern matching succeeds with a
true guard, determines the corresponding expression to be evaluated. If there is
no matching pattern with a true guard, a match fail run-time error occurs.

The running example : a faulty insertion program. Below we show an Erlang
function which is intended to insert an integer I in a list L of integers sorted in
ascending order, thereby producing a new, extended sorted list. That function
has an error as we have indicated in the line ERR. In what follows we will show
how to automatically generate input values for detecting that error.

4 E. De Angelis et al.

insert(I,L) -> case L of

[] -> [I];

[X|Xs] when I=<X -> [X,I|Xs]; % ERR: [X,I|Xs] should be [I,X|Xs]

[X|Xs] -> [X] ++ insert(I,Xs) % ‘++’ denotes list concatenation

end.

Constraint Logic Programming. By CLP(X) we denote the CLP language
based on constraints in the domain X, where X is: either (i) FD (the domain of
integer numbers belonging to a finite interval), or (ii) R (the domain of floating
point numbers), or (iii) B (the domain of boolean values) [20].

A constraint is a quantifier free, first-order formula whose variables range
over the domain X. A user-defined predicate is a predicate symbol not present
in the constraint language. An atom is an atomic formula p(t1, ..., tk), where p

is a user-defined predicate and t1, ..., tk are first-order terms constructed out of
constants, variables, and function symbols. A CLP(X) program is a set of clauses
of the form either A. or A :- c, A1,..., An., where A, A1,..., An are atoms
and c is a constraint on the domain X. A query is written as ?- c, A1,..., An.

A term, or an atom, is said to be ground if it contains no variables. As an example,
below we list a CLP(FD) program for computing the factorial function (‘#>’
and ‘#=’ denote the greater-than and equality relations, respectively):

factorial(0,1).

factorial(N,FN) :- N #> 0, M #= N-1, FN #= N*FM, factorial(M,FM).

For the operational semantics of CLP(X), we assume that, in the normal exe-
cution mode, constraints and atoms in a query are selected from left to right. In
Sect. 6 we will see how the selection order is altered by using coroutining con-
structs (in particular, by using when declarations). When a constraint is selected,
it is added to the constraint store, which is the conjunction of all constraints de-
rived so far, thereby deriving a new constraint store. Then, the satisfiability of
the new store is checked. The search for a clause whose head is unifiable with a
given atom is done by following the textual top-down order of the program and,
as usual for Prolog systems, the search tree is visited in a depth-first manner.

3 A Framework for PBT of Erlang Programs

In this section we introduce the fragment of the PropEr framework developed by
Papadakis and Sagonas [27], which we use to specify PBT tasks. PropEr relies
on a set of predefined functions for specifying the properties of interest for the
Erlang programs. We consider the following PropEr functions.

• ?FORALL(Xs, XsGen, Prop), which is the main function used for property
specification. Xs is either a variable, or a list of variables, or a tuple of
variables. XsGen is a generator that produces a value for Xs. Prop is a boolean
expression specifying a property that we want to check for the program
under test. We assume that Xs includes all the free variables occurring in
Prop. For instance, ?FORALL(X, integer(), mult1(X) >= X) (i) uses the
predefined generator integer(), which generates an integer, and (ii) specifies
the property mult1(X) >= X for the function mult1(X) -> X*(X+1).

Property-Based Test Case Generators for Free 5

• ?LET(Xs, XsGen, InExpr), which allows the definition of a dependent gen-
erator. Xs and XsGen are like in the ?FORALL function, and InExpr is an
expression whose free variables occur in Xs. ?LET(Xs, XsGen, InExpr) gen-
erates a value obtained by evaluating InExpr using the value of Xs produced
by XsGen. For instance, ?LET(X, integer(), 2*X) generates an even integer.

• ?SUCHTHAT(Xs, XsGen, Filter), which allows the definition of a generator
of values satisfying a given filter expression. Xs and XsGen are like in the
?FORALL function, and Filter is a boolean expression whose free variables
occur in Xs. ?SUCHTHAT(Xs, XsGen, Filter) generates a value, which is
a value of Xs produced by XsGen, for which the Filter expression holds
true. For instance, ?SUCHTHAT(L, list(integer()), L=/=[]) generates
non-empty lists of integers.

In PropEr a generator is specified by using: (i) type expressions, (ii) ?LET func-
tions, and (iii) ?SUCHTHAT functions. We consider generators of first-order values
only. However, higher-order functions may occur in Prop, InExpr, and Filter.

A type expression (whose semantics is a set of first-order values) is defined
by using either the following PropEr predefined types:

– any(): all first-order Erlang values;
– integer(L,H): the integers between L and H (these bounds can be omitted);
– float(L,H): the floats between L and H (these bounds can be omitted);
– atom(): all Erlang atoms;
– boolean(): the boolean values true and false;

or PropEr user-defined types, which are defined by using type parameters and
recursion, as usual. For instance, the type of binary trees with elements of a
parameter type T can be defined as follows:

-type tree(T) :: ’leaf’ | {’node’,tree(T),T,tree(T)}.
Compound type expressions can be defined by the following type constructors:

– {T1, . . . , TN}: the tuples of N elements of types T1, . . . , TN, respectively;
– list(T): the lists with elements of type T;
– [T1, . . . , TN]: the lists of N elements of types T1, . . . , TN, respectively;
– union([T1, . . . , TN]): all elements x such that x is of type either T1 or . . .orTN;
– exactly(lt): the singleton consisting of the literal lt.

Types can be used for specifying a contract 5 for an Erlang function Func by
writing a declaration of the form:

-spec Func(ArgType1, ..., ArgTypeN) -> RetType.

A property is specified by declaring a nullary function (whose name, by conven-
tion, starts with prop) of the form:

prop name() -> ?FORALL(Xs, XsGen, Prop)

Here is an example of a property specification, which we will use for testing the
insert function presented in Sect. 2.

5 More detailed information about types and contract specifications can be found at
http://erlang.org/doc/reference_manual/typespec.html.

http://erlang.org/doc/reference_manual/typespec.html

6 E. De Angelis et al.

prop_ordered_insert() -> % property_spec

?FORALL({E,L}, {integer(),ne_ordered_list()}, ordered(insert(E,L))).

ne_ordered_list() -> % generator_1

?SUCHTHAT(L, non_empty(list(integer())), ordered(L)).

non_empty(T) -> ?SUCHTHAT(L, T, L=/=[]). % generator_2

ordered(L) -> case L of % filter

[A,B|T] -> A =< B andalso ordered([B|T]);

_ -> true

end.

In order to run the prop ordered insert() function, PropEr needs an ad-hoc
implementation of the function ne ordered list() that generates a non-empty
ordered list. If such a function is not provided by the user, PropEr executes the
ne ordered list() generator in a very inefficient way by randomly generating
non-empty lists of integers until it produces a list which is ordered [27, Sect. 4.2].

The main contribution of this paper is a technique that relieves the program-
mer from implementing generator functions and, instead, it derives efficient gen-
erators directly from their specifications. By doing so, we mitigate the problem
of ensuring that the implementation of the generator is indeed correct, and we
also avoid, in most cases, the inefficiency of a generate-and-test behavior by a
suitable interleaving (via coroutining) of the process of data structure generation
with the process of checking the constraint satisfaction (that is, filter evaluation).
The implementation of our technique consists of the following six components.

1. A translator from PropEr to CLP, which translates the property specifica-
tion, together with the definitions of Erlang/PropEr types and functions that
are used, to a CLP representation.

2. A type-based generator, which implements a CLP predicate typeof(X,T)

that generates datum X of any given (predefined or user-defined) type T.
typeof queries can be run in a symbolic way, thereby computing for X a
term containing variables, possibly subject to constraints.

3. A CLP interpreter for filter functions, that is, functions occurring in filter
expressions. The interpreter handles the subset of the Core Erlang language
presented in Sect. 2. In particular, it defines a predicate eval(In,Env,Out)

such that, for an Erlang expression In whose variables are bound to values in
an environment Env, eval computes, according to the semantics of Erlang,
an output expression Out. The evaluation of eval is performed in a symbolic
way, as the values in the bindings in Env may contain CLP variables, possibly
subject to constraints. Thus, by running a query consisting of the conjunction
of a typeof atom and an eval atom, we get as answer a term whose ground
instances are values of the desired type, satisfying a given filter.

4. A value generator, which takes as input a term produced by running the type-
based generator (Component 2) and then the interpreter (Component 3).
The value generator can also be run immediately after the type-based gen-
erator, if no filter is present. Term variables, if any, may be subject to con-
straints. Concrete instances of the term (i.e., ground terms) satisfying these
constraints are generated by choosing values (in a deterministic or random
way) from the domains of the variables.

Property-Based Test Case Generators for Free 7

5. A translator from CLP to Erlang, which translates the values produced by
the value generator (Component 4) to Erlang values.

6. A property evaluator, which evaluates, using the Erlang system, the boolean
Erlang expression Prop whose inputs are the values produced by the transla-
tor (Component 5). Then the property evaluator checks whether or not one
of the following three cases occurs: (i) Prop holds, (ii) Prop does not hold,
or (iii) the evaluation of Prop crashes, that is, produces a runtime error.

The above six components have been implemented in a fully automatic tool,
called ProSyT6 (Property-Based Symbolic Testing).

4 Type-Based Value Generation

Type-based generation (Component 2 of our ProSyT tool) is achieved through
the implementation of the typeof predicate. Given a type T, the predicate
typeof(X,T) holds iff X is a CLP term encoding an Erlang value of type T.
If T is a predefined type, typeof invokes a T-specific predicate for generating the
term X. For example, for the type list(A), that is, the type of the lists whose
elements are of type A, typeof is implemented by the following clause:

typeof(X,list(A)) :- list(X,A).

where the binary predicate list is defined by the following two clauses:

list(nil,T).

list(cons(X,Xs),T) :- typeof(X,T), list(Xs,T).

where nil and cons are the CLP representations of the Erlang empty list and list
constructor, respectively. If T is a user-defined type, typeof invokes the clause:

typeof(X,T) :- typedef(T,D), typeof(X,D).

where typedef(T,D) holds iff D is the (CLP representation of the Erlang) defini-
tion of type T. The clauses for typedef are generated during the translation from
Erlang to CLP. For example, for the definition of the type tree(T) of binary
trees, introduced in Sect. 3, we have the following clause:

typedef(tree(T), union([

exactly(lit(atom,leaf)),

tuple([exactly(lit(atom,node)),tree(T),T,tree(T)])])).

where: (i) union([T1,T2]) denotes the union of the two types T1 and T2,
(ii) exactly(E) denotes a type consisting of the term E only, and (iii) tuple(L)
denotes the type of the tuples {t1, . . . , tn} of terms such that ti has the type
specified by the i-th element of the list L of types.

Apart from the case when the type T is exactly(lit(...)), the query
?- typeof(X,T) returns answers of the form X=t, where t is a non-ground term,
whose variables may be subject to constraints. Here follow some examples of use
of the typeof predicate. If we run the query ?- typeof(X,integer) we get a
single answer of the form X=lit(int, 1320), 1320 in inf..sup, where 1320

6 https://fmlab.unich.it/testing/

https://fmlab.unich.it/testing/

8 E. De Angelis et al.

is a variable that can take any integer value in the interval inf..sup, where inf

and sup denote the minimum and the maximum integer, respectively. We can
explicitly specify a range for integers. For instance, the answer to the query
?- typeof(X,integer(10,20)) is X=lit(int, 1402), 1402 in 10..20.

The query ?- typeof(X,list(integer)) produces a first answer of the
form X=nil. If we compute an additional answer for that query, then we get
X=cons(lit(int, 1618), nil), 1618 in inf..sup denoting the nil termi-
nated list containing a single integer value. If we continue asking for additional
answers, then by the standard Prolog execution mechanism, based on backtrack-
ing and depth-first search, we get answers with lists of increasing length.

When dealing with recursively defined data types, we have to care about
the size of the generated terms, with the objective of avoiding the possible non-
termination of the evaluation of the typeof predicate. The size of a term is
defined to be the number of list or tuple constructors occurring in it. Thus, for
instance, the term lit(X,integer) encoding an integer, has size 0, and the
size of a list of integers is equal to its length. The size of any term generated by
typeof is constrained to be in the interval min size..max size, where min size

and max size are configurable non-negative integers.

As an alternative to the built-in mechanisms for size management, we also
provide the predicate typeof(X,T,S) which holds if X is a term of type T and
size S. By using specific values of S or providing constraints on S, the user can
specify the term size he desires and can control the answer generation process.

The user can also generate terms of random size, instead of terms of increas-
ing size, as obtained by standard Prolog execution. For this purpose, we provide
configuration options allowing typeof to generate data structures whose size is
randomly chosen within the interval min size..max size.

It is also possible to use randomness during the generation of tuples and
unions. For instance, every run of the query ?- typeof(X,tree(integer),2)

using standard Prolog execution, produces the same first answer, which is a tree
consisting of the root and its right child. In order to modify such a behavior, we
have introduced the random tuple option that makes typeof generate tuples by
randomly choosing one of its elements. (Recall that non-empty trees are indeed
defined as tuples.) By doing so, the first answer to the above query is the tree
consisting of the root and either its right child or its left child.

Similarly, for union types, we can introduce randomness through the use of
the random union option. For example, suppose that the type color has the two
values black and white only. Thus, its translation into CLP is as follows:

typedef(color,union([exactly(’black’),exactly(’white’)])).

Then, if we run the query ?- typeof(X,color) using the standard Prolog exe-
cution mechanism, we will always obtain black as the first answer. However, if
we use the random union option we may get either black or white with equal
frequency. More in general, we provide a weighted union type, which allows
the association of frequencies with types using non-negative integers, so that
elements of types with higher frequencies are generated more often.

Property-Based Test Case Generators for Free 9

Random generation of ground terms (Component 4 of ProSyT) is achieved
through the use of the rand elem(X) predicate. For example, the clauses used
for the generation of (possibly, non-flat) lists of integers are the following ones:

rand_elem(nil).

rand_elem(cons(X,L)) :- rand_elem(X), rand_elem(L).

rand_elem(lit(int,V)) :- rand_int(V).

rand_int(V) :- int_inf(V,Inf), int_sup(V,Sup), random_between(Inf,Sup,V).

where rand int(V) holds iff V is a random integer value in the range Inf..Sup,
Inf and Sup being the minimum and maximum values that V can take, subject to
the constraints that are present in the constraint store. For instance, the query:

?- typeof(X,list(integer(1,10)),3), rand elem(X). may return the answer:

X = cons(lit(int,6), cons(lit(int,4), cons(lit(int,9), nil))).

A similar mechanism is used for generating ground terms containing floats.

Finally, ground CLP terms are translated to Erlang values (Component 5
of ProSyT) by using the write elem predicate. For instance, if we append
write elem(X) to the above query, we get the Erlang list [6,4,9].

5 The Interpreter of Filter Functions

The CLP interpreter, which is Component 3 of ProSyT, provides the predicate
eval(In,Env,Out) that computes the output value Out of the input expression
In in the environment Env. The environment Env, which maps variables to values,
is represented by a list of pairs of the form (’X’,V), where ’X’ is the CLP
constant representing the Erlang variable X and V is the CLP term representing
its value. By means of a symbolic representation of Erlang expressions and values
occurring in the environment (by using possibly non-ground CLP terms subject
to suitable constraints), the evaluation of any input expression via the interpreter
allows the exhaustive exploration of all program computations without explicitly
enumerating all the concrete input values.

In the interpreter, a function definition is represented by a CLP term of the
form fun(Pars,Body), where Pars and Body are the formal parameters and
the function body, respectively. As an example of how the interpreter is defined,
Fig. 1] lists the CLP implementation of the semantic rule for function application,
represented by a term of the form apply(Func,IExps), where Func is the name
of the function to be applied to the actual parameters IExps.

eval(apply(Func,IExps),Env,Out) :-

fundef(Func,fun(Pars,Body)), % 1

eval_args(IExps,Env,AExps), % 2

zip_binds(Pars,AExps,Binds), % 3

constrain_output_exp(Func,Out), % 4

eval(Body,Binds,Out). % 5

Fig. 1. CLP interpreter for applying the function
Func to the actual parameters IExps.

The behavior is as follows.
First, the interpreter retrieves
(at line 1) the definition of the
function Func. Then, it evalu-
ates (at line 2) the actual pa-
rameters IExps in the environ-
ment Env, thereby deriving the
list of expressions AExps. Then,
the interpreter binds (at line 3)
the formal parameters Pars to

10 E. De Angelis et al.

the actual parameters AExps, thereby deriving the new environment Binds. If a
contract for Func has been provided (see Sect. 3) and the --force-spec option
of ProSyT has been used, then (at line 4) a constraint is added on the CLP vari-
ables occurring in the output expression Out. For instance, let us suppose that
the programmer specifies the following contract for the listlength function
that computes the length of a list:

-spec listlength(list(any())) -> non neg integer().

where the non neg integer() type requires the output of listlength on lists
of any type to be a non-negative integer. Thus, the constraint M#>=0 is imposed
on the CLP variable M occurring in the output expression lit(int,M) com-
puted by listlength. Finally, the interpreter evaluates (at line 5), the Body of
the function Func in the new environment Binds, thereby deriving the output
expression Out.

Now, let us consider the filter function ordered list of Sect. 3. In order to
generate symbolic ordered lists, which will be used for producing the test cases
for insert, we run the following query:

?- typeof(I,non_empty(list(integer))),

eval(apply(var(’ordered’,1),[var(’L’)]),[(’L’,I)],lit(atom,true)).

In the above query eval calls ordered in an environment where the ’L’ pa-
rameter is bound to I, and outputs an expression denoting the atom true. As a
result of query evaluation, typeof binds the CLP variable I to a nonempty list
of integers and eval adds constraints on the elements of the list enforcing them
to be in ascending order. Among the first answers to the query we obtain:

I = cons(lit(int,_54),cons(lit(int,_55),nil)), _55#>=_54 ;

I = cons(lit(int,_51),cons(lit(int,_52),cons(lit(int,_53),nil))),

_52#>=_51, _53#>=_52

Then, by running the predicates rand elem and write elem, for each non-
ground list whose elements are in ascending order, we can (randomly) gener-
ate one or more ordered Erlang lists, without backtracking on the generation of
lists whose elements are not ordered. The following command runs ProSyT on
the file ord insert bug.erl that includes the bugged insert function and the
prop ordered insert() property specification.

$./prosyt.sh ord_insert_bug.erl prop_ordered_insert

By default, ProSyT runs 100 tests by generating non-ground ordered lists of
increasing length, which are then instantiated by choosing integers from the
interval -1000..1000. The 100 tests produce as output a string of 100 characters
such as (we show an initial part of that string only):

x.x.xxxxxxx...xxxx.xxxxxxx.xxxxx.xxxx..

Each character represents the result of performing a test case: (i) the charac-
ter ‘.’ means that the desired property prop ordered insert holds, and (ii) the
character ‘x’ means that it does not hold, hence revealing a bug.

The generation of the ordered lists for the 100 test cases takes 42ms (user
time) on an Intel R© CoreTM i7-8550U CPU with 16GB running Ubuntu 18.04.2.

Property-Based Test Case Generators for Free 11

6 Coroutining the Type-Based Generator and the Filter
Interpreter

The process of symbolic test case generation described in the previous section has
a good performance when the filter does not specify constraints on the skeleton of
the data structure, but only on its elements. For instance, in the case of ordered
lists, the filter ordered(L) does not enforce any constraint on the length of the
symbolic list L generated by the type-based generator, but only on its elements.

Now, let us consider the following filter function avl, which checks whether
or not a given binary tree is an AVL tree, that is, a binary search tree that
satisfies the constraint of being height-balanced [10].

avl(T) -> case T of
leaf -> true;
{node,L,V,R} ->
B = height(L)-height(R) andalso B >= -1 andalso B =< 1 andalso % 1
ltt(L,V) andalso gtt(R,V) andalso % 2
avl(L) andalso avl(R);
_ -> false

end.

The recursive clause of the case-of checks whether or not any tree {node,L,V,R}
rooted in V (the value of the node) is height-balanced (line 1), all the values in
the left subtree L are smaller than V, and all the values in the right subtree R are
larger than V (line 2). avl uses the following utility functions: (i) height(T),
which returns the height of the tree T, (ii) ltt(T,V), and (iii) gtt(T,V), which
return true if the value of each node n in the tree T is less than, or greater
than V, respectively. In order to generate AVL trees, we run the following query:

?- typeof(X,tree(integer)),

eval(apply(var(’avl’,1),[var(’T’)]),[(’T’,X)],lit(atom,true)),

rand_elem(X).

However, unlike the case of ordered lists, among the answers to the query
typeof(X,tree(integer)) just a few instances of X turn out to be AVL trees.
Hence, eval repeatedly fails until typeof generates a binary tree satisfying the
constraints specified by the filter. As an example, for trees of size 10, eval finds
10 AVL trees out of 9000 trees generated by typeof.

In order to make the generation process more efficient, we use the coroutining
mechanism to implement a data-driven cooperation [23], thereby interleaving the
execution of the type-based generator typeof and that of the interpreter eval.
Coroutining is obtained by interchanging the order of the typeof and eval

atoms in the query, so that the eval call is selected before the typeof call.
However, the execution of eval is suspended on inputs of the filter function that
are not instantiated enough to decide which clauses of a case-of expression
can be used to proceed in the function evaluation. The execution of eval is then
resumed whenever the input to the filter function gets further instantiated by the
typeof execution. By doing so, during the generation of complex data structures,
typeof must comply with the constraints enforced by eval. This mechanism

12 E. De Angelis et al.

can dramatically improve efficiency, because the unsatisfiability of the given
constraints may be detected before the entire data structure is generated.

Coroutining is implemented by using the when(Cond,Goal) primitive pro-
vided by SWI-Prolog [35], which suspends the execution of Goal until Cond be-
comes true. In particular, when declarations are used in the rule of the interpreter
shown below, which defines the operational semantics of case-of expressions.

eval(case(CExps,Cls),Env,Exp) :-

eval(CExps,Env,EExps),

suspend_on(Env,EExps,Cls,Cond),

when(Cond,(match(Env,EExps,Cls,MEnv,Cl), eval(Cl,MEnv,Exp))).

The evaluation of expressions of the form ‘case CExps of Cls end.’, encoded
as case(CExps,Cls), in the environment Env behaves as follows. The expres-
sions CExps are evaluated in the environment Env, thereby getting the expres-
sions EExps to be matched against one of the patterns of the clauses Cls.
Then, suspend on(Env,EExps,Cls,Cond) generates a condition Cond of the
form (nonvar(V1), . . . , nonvar(Vn)), where V1, . . . , Vn are the CLP variables
occurring in EExps that would get bound to either a list or a tuple while matching
the expressions EExps against the patterns of the clauses Cls. Such a condition
forces the suspension of the evaluation of the goal occurring as a second argument
of the when primitive until all of these variables get bound to a non-variable term.
If the evaluation of the case-of binds all the variables to terms which are neither
lists nor tuples, then suspend on produces a Cond that holds true. Thus, when
the goal of the when primitive is executed: (i) match(Env,EExps,Cls,MEnv,Cl)
selects a clause Cl from Cls whose pattern matches EExps, hence producing the
environment MEnv that extends Env with the new bindings derived by match-
ing, and (ii) eval(Cl,MEnv,Exp) evaluates Cl in MEnv and produces the output
expression Exp. Now, if we run the following query:

?- eval(apply(var(’avl’,1),[var(’T’)]),[(’T’,X)],lit(atom,true)),

typeof(X,tree(integer)),

rand_elem(X).

the CLP variable X, shared between typeof and eval, forces the type-based
generator and the filter to cooperate in the generation of AVL trees. Indeed, as
soon as the typeof (partially) instantiates X to a binary tree, the evaluation of
the filter function adds constraints on the skeleton of X (corresponding to the
properties at lines 1 and 2 of the definition of the avl function). The advantage
of this approach is that the constraints on X restrict the possible ways in which
its left and right subtrees can be further expanded by recursive calls of typeof.
As an example, suppose we want to test the following function avl insert that
inserts the integer element E into the AVL tree T:

avl_insert(E,T) -> case T of

{node,L,V,R} when E < V -> re_balance(E,{node,avl_insert(E,L),V,R});

{node,L,V,R} when E > V ->

re_balance(E,{node,L,V,avl_insert(E,R)});

{node,L,V,R} when E == V -> {node,L,V,R};

leaf -> {node,leaf,E,leaf}

end.

Property-Based Test Case Generators for Free 13

This function uses the following utility functions shown below: (i) re balance,
which given an integer element E and a binary search tree T, performs suitable
rotations on T so as to make it height-balanced, and (ii) right rotation, and
(iii) left rotation, which perform a right rotation, and a left rotation on T,
respectively. The definition of re balance has two errors: (1) at line ERR 1,
where ‘<’ should be ‘>’, and (2) at line ERR 2, where ‘>’ should be ‘<’.

re_balance(E,T) ->
{node,L,V,R} = T,
case height(L) - height(R) of
2 -> {node,_,LV,_} = L, % Left unbalanced tree
if E < LV -> right_rotation(T);

E > LV -> right_rotation({node,left_rotation(L),V,R})
end;

-2 -> {node,_,RV,_} = R, % Right unbalanced tree
if E < RV -> left_rotation(T); % ERR_1

E > RV -> left_rotation({node,L,V,right_rotation(R)}) % ERR_2
end;
_ -> T

end.

right_rotation({node,{node,LL,LV,LR},V,R}) ->
{node,LL,LV,{node,LR,V,R}}.

left_rotation({node,L,V,{node,RL,RV,RR}}) ->
{node,{node,L,V,RL},RV,RR}.

The following test case specification states that after inserting an integer ele-
ment E in an AVL tree, we get again an AVL tree:

avl() -> ?SUCHTHAT(T, tree(integer()), avl(T)).

prop_insert() ->

?FORALL({E,T}, {integer(),avl()}, avl(avl_insert(E,T))).

The following command runs ProSyT on the file avl insert bug.erl that in-
cludes the above bugged avl insert function and the test case specification.

$./prosyt.sh avl_insert_bug.erl prop_insert --force-spec\

--min-size 3 --max-size 20 --inf -10000 --sup 10000 --tests 200

In this command we have used the following options:
(i) --min-size and --max-size specify the values of min size and max size,
respectively, determining the size of the data structure (see Sect. 3), (ii) --inf

and --sup specify the bounds of the interval where integer elements are taken
from (see Sect. 3), and (iii) --tests N specifies the number of tests to be run.

Here is an initial part of the string of characters we get:

..x...x...cx..x.xxc....x..c.x..x..x.c..

The generation of the 200 test cases takes 550ms (user time). Several ‘x’ charac-
ters are generated, corresponding to runs of avl insert that do not return an
AVL tree, and hence reveal bugs. Moreover, the ‘c’ characters in the output string
correspond to crashes of the execution, due to the fact that the right rotation

or left rotation functions threw a match fail exception when applied to a
tree on which those rotations cannot be performed.

14 E. De Angelis et al.

7 Experimental evaluation

In this section we present the experimental evaluation we have performed for
assessing the effectiveness and the efficiency of the test case generation process
we have presented in this paper and we have implemented in ProSyT.

Benchmark suite. The suite consists of 10 Erlang programs: (1) ord_insert,
whose input is an integer and an ordered list of integers (see Sect. 2);
(2) up_down_seq, whose input is a list of integers of the form: [w1, . . . , wm,
z1, . . . , zm], with w1 ≤ . . . ≤ wm and z1 ≥ . . . ≥ zm; (3) n_up_seqs, whose
input is a list of ordered lists of integers of increasing length; (4) delete, whose
input is a triple 〈w, u, v〉 of lists of integers such that w is the ordered permuta-
tion of the list obtained by concatenating the ordered lists u and v; (5) stack,
whose input is a pair 〈s, n〉, where s is a stack encoded as a list of integers,
and n is the length of that list; (6) matrix_mult, whose input is a pair of ma-
trices encoded as a pair of lists of lists, (7) det_tri_matrix, whose input is a
lower triangular matrix encoded as a list of lists of increasing length of the form:
[[v11], [v21, v22], . . . , [vn1, . . . , vnn]], (8) balanced_tree, whose input is a height-
balanced binary tree [10]; (9) binomial_tree_heap, whose input is a binomial
tree satisfying the minimum-heap property [10]; (10) avl_insert, whose input
is an AVL tree (see Sect. 6). The benchmark suite is available online as part
of the ProSyT tool (the suffixes _bug.erl and _ok.erl denotes the buggy and
correct versions of the programs, respectively).

Experimental processes. We have implemented the following two experimental
processes. (i) Generate-and-Test, which runs PropEr for randomly generating
a value of the given data type, and then tests whether or not that value sat-
isfies the given filter; this process uses the predefined generator for lists and a
simple user-defined generator for trees. (ii) Constrain-and-Generate, which runs
ProSyT by coroutining the generation of the skeleton of a data structure and the
evaluation of the filter expression (see Sect. 6), and then randomly instantiating
that skeleton.

Technical resources. The experimental evaluation has been performed on a ma-
chine equipped with an Intel R© CoreTM i7-8550U CPU @ 1.80GHz × 8 processor
and 16GB of memory running Ubuntu 18.04.2 LTS. The timeout limit for each
run of the test cases generation process has been set to 300 seconds.

Results. We have run PropEr and ProSyT for generating up to 100,000 test cases
whose size is in the interval [10, 100], and we made the random generator for
integer and real values to take values in the interval [−10000, 10000]. ProSyT has
been configured so that the random instantiation phase can produce at most 1500
concrete test cases for every data structure skeleton found. The results of the
experimental evaluation are summarized in Table 1.

The experiments show that the Constrain-and-Generate process used by
ProSyT performs much better than the Generate-and-Test process used by
PropEr. Indeed, Generate-and-Test is able to find valid test cases only when
the filter is very simple. Actually, in some examples, PropEr generates test cases
with very small size only (less than the minimum specified size limit of 10).

Property-Based Test Case Generators for Free 15

Program
PropEr ProSyT

Time N Time N

1. ord_insert 300.00 0 300.00 67,083

2. up_down_seq 300.00 0 300.00 22,500

3. n_up_seqs 300.00 0 300.00 24,000

4. delete 300.00 0 9.21 100,000

5. stack 143.71 100,000 19.57 100,000

6. matrix_mult 300.00 0 300.00 76,810

7. det_tri_matrix 300.00 304 32.28 13,500

8. balanced_tree 300.00 121 21.54 100,000

9. binomial_tree_heap 300.00 0 43.45 4,500

10. avl_insert 300.00 0 300.00 23,034

Table 1. Column Time reports the seconds needed to generate N (≤ 100,000) test
cases of size in the interval [10, 100] within the time limit of 300 seconds.

In particular, for the ord_insert program, PropEr generates ordered lists of
length at most 8, while ProSyT is able to generate lists of length up to 53.
Also for the programs det_tri_matrix and balanced_tree, the size of the
largest data structure generated by PropEr (a 5×5 matrix and a 15 node bal-
anced tree) is much smaller than the largest data structure generated by ProSyT
(a 12×12 matrix and a 22 node balanced tree). Finally, note that for the pro-
grams det_tri_matrix and binomial_tree_heap, ProSyT halted before the
time limit of 300 seconds because no more skeletons exist within the given size
interval.

8 Related Work

Automated test generation has been suggested by many authors as a means
of reducing the cost of testing and improving its quality [32]. Property-Based
Testing, and in particular the QuickCheck approach [8], is one of the most well-
established methods for automating test case generation (see also the references
cited in the Introduction).

PropEr [27,30] is a popular Property-Based Testing tool for Erlang pro-
grams that follows the QuickCheck approach. PropEr was proposed as an open-
source alternative to Quviq QuickCheck [2], a proprietary, closed-source tool for
Property-Based Testing of Erlang programs. In addition, PropEr was designed
to be integrated with the Erlang type specification language.

However, a critical point of PropEr (and of other PBT frameworks) is that
the user bears most of the burden of writing correct, efficient generators of test
data. Essentially, PropEr only provides an automated way for converting type
specifications into generators of free data structures, but very limited support is
given to automatically generate data structures subject to constraints, such as
the sorted lists and AVL-trees we have considered in this paper. In this respect,
the main contribution of our work is a technique for the automated generation
of test data from PropEr specifications. Indeed, our approach, based on a CLP

16 E. De Angelis et al.

interpreter for (a subset of) Erlang, allows the automated generation of test data
in an efficient way. Test data are generated by interleaving, via coroutining,
the data structure generation, the filtering of those data structures based on
constraint solving, and the random instantiation of variables. This mechanism,
implemented in the ProSyT tool, has demonstrated good efficiency on some non-
trivial examples.

The work closest to ours is the one implemented by the FocalTest tool [6].
FocalTest is a PBT tool designed to generate test data for programs and prop-
erties written in the functional language Focalize. Its main feature is a transla-
tion of Focalize programs into CLP(FD) programs extended with the constraint
combinators apply and match, which encode function application and pattern
matching, respectively. apply and match are implemented by using freeze and
wake-up mechanisms based on the instantiation of logical variables, and in par-
ticular, the evaluation of apply and match is waken up when their arguments
are bound to non-variable terms.

A difference between FocalTest and ProSyT comes from the fact that, Focal-
ize is a statically typed language and Erlang is a dynamically typed language.
Static type information is used by FocalTest for instantiating variables, while in
ProSyT type-based instantiation is performed through the typeof data structure
generator. Static typing is also exploited in the proof of correctness of FocalTest,
whose operational semantics has been formalized in Coq [5]. In contrast, we han-
dle Erlang’s dynamic typing discipline by writing an interpreter of (a subset of)
the language, which also models failure due to runtime typing errors.

The development of the CLP interpreter for Erlang and, more in general, for
the PropEr framework, is indeed the most significant and distinctive feature of
our approach. From a methodological point of view, a direct implementation of
the operational semantics in a rule-based language like CLP, requires a limited
effort for the proof of correctness with respect to a formal semantics (we did not
deal with this issue in the present paper, but we tested our interpreter on several
examples). From a practical point of view, the use of the interpreter avoids the
need of extending CLP with special purpose constraint operators like apply

and match. Moreover, our interpreter-based approach lends itself to possible
optimizations for improving the efficiency of test case generation, such as partial
evaluation [21], for automatically deriving specialized test case generators.

The freeze and wake-up mechanisms used by FocalTest are quite related to
the coroutining mechanism implemented by ProSyT, which, however, is realized
by the interpreter, rather than by the constraint solving strategy.

Other differences between FocalTest and ProSyT concern numerical variables
and random instantiation. FocalTest handles integer numerical variables using
the CLP(FD) constraint solver and randomly instantiates those variables using
a strategy called random iterative domain splitting. ProSyT handles integer and
float numerical variables using CLP(FD) and CLP(R), respectively, for solving
constraints on those variables, and their random instantiation is done by using
CLP(FD) and CLP(R) built-ins. ProSyT is also able to perform random gener-

Property-Based Test Case Generators for Free 17

ation of data structures, by using a randomized version of the predicate typeof

(see Sect. 4), possibly specifying a distribution for the values of a given type.

The idea of interleaving, via coroutining, the generation of a data structure
with the test of consistency of the constraints that the data structure should
satisfy, is related to the lazy evaluation strategy used by Lazy SmallCheck [31],
a PBT tool for Haskell. Lazy SmallCheck checks properties for partially defined
values and lazily evaluates parallel conjunction to enable early pruning of the
set of candidate test data. Lazy SmallCheck does not use symbolic constraint
solving, and exhaustively generates all values up to a given bound.

Besides functional programming languages, PBT has also been applied to
Prolog [1]. Similarly to ProSyT, the PrologCheck tool [1] implements random-
ized test data generation for Prolog. However, when the test data specification
contains constraints, PrologCheck follows a generate-and-test approach, and no
mechanism is provided by the tool for coroutining data generation and constraint
solving (unless this is coded directly by the programmer).

The use of constraint-based reasoning techniques for test-case generation
is a well-established approach [11,16,18,25], which has been followed for the
implementation of several tools in various contexts. Among them, we would like
to mention: GATeL [26], a test sequence generator for the synchronous dataflow
language LUSTRE, AUTOFOCUS [29], a model-based test sequence generator
for reactive systems, JML-TT [3], a tool for model-based test case generation
from specifications written in the Java Modeling Language (JML), Euclide [17],
a tool for testing safety-critical C programs, and finally, tools for concolic testing,
such as PathCrawler [37], CUTE [34], and DART [15], which combine concrete
execution with constraint-based path representations of C programs.

Our work is also related to approaches and tools proposed in the context of
languages for specifying and testing meta-logic properties of formal systems. In
particular, αCheck [7] follows an approach very much inspired by PBT for per-
forming bounded model-checking of formal systems specified in αProlog, which
is a Horn clause language based on nominal logic. Related concepts are at the ba-
sis of QuickChick, a PBT tool for the Coq proof assistant [28]. Lampropoulos et
al. [24] also address the problem of deriving correct generators for data satisfying
suitable inductive invariants on top of QuickChick. In that work, the mechanism
for data generation makes use of the narrowing technique, which similarly to our
resolution-based approach, builds upon the unification algorithm.

Declarative approaches for test data generation have been proposed in the
context of bounded-exhaustive testing (BET) [9], whose goal is to test a program
on all input data satisfying a given invariant, up to a fixed bound on their size.
One of the most well-known declarative frameworks for BET is Korat [4], which
is a tool for testing Java programs. Given a Java predicate specifying a data
structure, subject to a given invariant and a size bound on its input, Korat uses
backtracking to systematically explore the bounded input space of the predicate
by applying a generate-and-test strategy. JMLAutoTest [38] implements a tech-
nique, based on statistical methods, for avoiding the generation of many useless
test cases by exploiting JML specifications.

18 E. De Angelis et al.

A different domain-specific language for BET of Java programs is UDITA [14].
It provides non-deterministic choice operators and an interface for generating
linked structures. UDITA improves efficiency with respect to the generate-and-
test approach by applying the delayed choice principle, that is, postponing the
instantiation of a variable until it is first accessed.

It has been shown that CLP-based approaches, which exploit built-in unifica-
tion and special purpose constraint solving algorithms, can be very competitive
with respect to domain-specific tools for BET [13].

9 Conclusions

We have presented a technique for automated test case generation from test case
specifications. We have considered the Erlang functional programming language
and a test case specification language based on the PropEr framework [27,30].

In this paper we have shown how we can relieve the programmer from writing
generators of test data by using constraint logic programming (CLP). However,
even if our approach to automated PBT is based on CLP, the programmer is not
required to deal with any concept related to logic programming, and Prolog code
is fully transparent to the programmer. Indeed, we provide both (i) a translator
from PropEr and Erlang specifications and programs to CLP, and (ii) a translator
of the generated test data from CLP syntax to Erlang syntax.

At present, the ProSyT tool, which implements our PBT technique, does not
provide any shrinking mechanism to try to generate an input of minimal size in
case the program under test does not satisfy the property of interest. However,
we think that this mechanism can efficiently be realized by using the primitives
for controlling term size provided by our tool, together with Prolog default search
strategy based on backtracking.

Finally, we would like to notice that, even if we developed our technique
in the context of PBT of Erlang programs, the approach we followed is to a
large extent independent of the specific programming language, as it is based
on writing a CLP interpreter of the programming language under consideration.
Thus, as future work, we plan to apply a similar scheme to other programming
languages by providing suitable CLP interpreters.

Acknowledgements

We would like to thank the anonymous reviewers for their very helpful and
constructive comments.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti are members of
the INdAM Research group GNCS. E. De Angelis, F. Fioravanti, and A. Pet-
torossi are research associates at CNR-IASI, Rome, Italy.

A. Palacios was partially supported by the EU (FEDER) and the Spanish
Ayudas para contratos predoctorales para la formación de doctores and Ayudas
a la movilidad predoctoral para la realización de estancias breves en centros de
I+D (MICINN) under FPI grants BES-2014-069749 and EEBB-I-17-12101.

Property-Based Test Case Generators for Free 19

References

1. C. Amaral, M. Florido, and V. S. Costa. PrologCheck – Property-Based Testing
in Prolog. In M. Codish and E. Sumii, editors, Functional and Logic Programming
- 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4–6, 2014,
Lecture Notes in Computer Science 8475, pages 1–17. Springer, 2014.

2. Th. Arts, J. Hughes, J. Johansson, and U. T. Wiger. Testing telecoms software with
Quviq QuickCheck. In M. Feeley and Ph. W. Trinder, editors, Proceedings of the
2006 ACM SIGPLAN Workshop on Erlang, Portland, Oregon, USA, September 16,
2006, pages 2–10. ACM, 2006.

3. F. Bouquet, F. Dadeau, and B. Legeard. Automated boundary test generation
from JML specifications. In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM
2006: Formal Methods, Lecture Notes in Computer Science 4085, pages 428–443.
Springer Berlin Heidelberg, 2006.

4. C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on
Java predicates. In Proceedings of the 2002 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 123–133, New York, NY, USA, 2002.
ACM.

5. M. Carlier, C. Dubois, and A. Gotlieb. A first step in the design of a formally
verified constraint-based testing tool: FocalTest. In A.D. Brucker and J. Julliand,
editors, Tests and Proofs - 6th International Conference, TAP 2012, Prague, Czech
Republic, May 31–June 1, 2012. Proceedings, Lecture Notes in Computer Science
7305, pages 35–50. Springer, 2012.

6. M. Carlier, C. Dubois, and A. Gotlieb. FocalTest: A Constraint Programming
Approach for Property-Based Testing. In J. Cordeiro, M. Virvou, and B. Shishkov,
editors, Software and Data Technologies - 5th International Conference, ICSOFT
2010, Athens, Greece, July 22–24, 2010. Revised Selected Papers, Communications
in Computer and Information Science 170, pages 140–155. Springer, 2013.

7. J. Cheney and A. Momigliano. αCheck: A mechanized metatheory model checker.
Theory and Practice of Logic Programming, 17(3):311–352, 2017.

8. K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of
Haskell programs. In M. Odersky and Ph. Wadler, editors, Proceedings of the 5th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’00),
Montreal, Canada, September 18–21, 2000, pages 268–279. ACM, 2000.

9. D. Coppit, W. Le, K. J. Sullivan, S. Khurshid, and J. Yang. Software assur-
ance by bounded exhaustive testing. IEEE Transactions on Software Engineering,
31(4):328–339, 2005.

10. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms
(3rd Ed.). MIT Press, 2009.

11. J. Dick and A. Faivre. Automating the generation and sequencing of test cases from
model-based specifications. In J. Woodcock and P. G. Larsen, editors, FME ’93:
Industrial-Strength Formal Methods, Proceedings of the 1st International Sympo-
sium of Formal Methods Europe, Odense, Denmark, April 19–23, 1993, Lecture
Notes in Computer Science 670, pages 268–284. Springer, 1993.

12. R. Carlsson et al. Core Erlang 1.0.3. language specification. Technical Report,
Department of Information Technology, Uppsala University, Uppsala, Sweden,
www.it.uu.se/research/group/hipe/cerl/doc/core erlang-1.0.3.pdf, 2004.

13. F. Fioravanti, M. Proietti, and V. Senni. Efficient generation of test data structures
using constraint logic programming and program transformation. Journal of Logic
and Computation, 25(6):1263–1283, 2015.

20 E. De Angelis et al.

14. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov.
Test generation through programming in UDITA. In J. Kramer, J. Bishop, P.T.
Devanbu, and S. Uchitel, editors, Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, May 2–8 2010, Cape Town, South Africa,
pages 225–234. ACM, 2010.

15. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random
Testing. In V. Sarkar and M. W. Hall, editors, Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation, Chicago,
IL, USA, June 12–15, 2005, pages 213–223. ACM, 2005.

16. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test case generation for object-
oriented imperative languages in CLP. Theory and Practice of Logic Programming,
10(4–6):659–674, 2010.

17. A. Gotlieb. Euclide: A Constraint-Based Testing Framework for Critical C Pro-
grams. In 2nd International Conference on Software Testing, Verification and
Validation, ICST 2009, Denver, Colorado, USA, April 1–4, 2009, pages 151–160.
IEEE Computer Society, 2009.

18. A. Gotlieb, B. Botella, and M. Rueher. A CLP framework for computing structural
test data. In Lloyd J. et al., editor, Computational Logic - CL 2000, Lecture Notes
in Computer Science 1861, pages 399–413. Springer, Berlin, Heidelberg, 2000.

19. C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR formalism for
Artificial Intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI ’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

20. J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

21. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

22. junit-quickcheck: Property-based testing, JUnit-style https://github.com/

pholser/junit-quickcheck.
23. R. A. Kowalski. Logic for Problem Solving. North Holland, 1979.
24. L. Lampropoulos, Z. Paraskevopoulou, and B. C. Pierce. Generating good genera-

tors for inductive relations. Proceedings of the ACM on Programming Languages,
2:45:1–45:30, 2017.

25. B. Marre. Toward automatic test data set selection using algebraic specifications
and logic programming. In K. Furukawa, editor, Logic Programming, Proceedings of
the 8th International Conference, Paris, France, June 24–28, 1991, pages 202–219.
MIT Press, 1991.

26. B. Marre and A. Arnould. Test sequences generation from LUSTRE descriptions:
GATeL. In Proceedings of the 15th IEEE International Conference on Automated
Software Engineering, ASE 2000, Grenoble, France, September 11–15, 2000, page
229. IEEE Computer Society, 2000.

27. M. Papadakis and K. Sagonas. A PropEr Integration of Types and Function
Specifications with Property-Based Testing. In K. Rikitake and E. Stenman, edi-
tors, Proceedings of the 10th ACM SIGPLAN Workshop on Erlang, Tokyo, Japan,
September 23, 2011, pages 39–50. ACM, 2011.

28. Z. Paraskevopoulou, C. Hritcu, M. Dénès, L. Lampropoulos, and B. C. Pierce.
Foundational Property-Based Testing. In Ch. Urban and X. Zhang, editors, Inter-
active Theorem Proving - Proceedings of the 6th International Conference, 2015,
Nanjing, China, August 24–27, 2015, Lecture Notes in Computer Science 9236,
pages 325–343. Springer, 2015.

https://github.com/
pholser/junit-quickcheck

Property-Based Test Case Generators for Free 21

29. A. Pretschner and H. Lötzbeyer. Model based testing with constraint logic pro-
gramming: First results and challenges. In Proceedings of the 2nd ICSE Workshop
on Automated Program Analysis, Testing and Verification (WAPATV), pages 1–9,
2001.

30. PropEr: Property-Based Testing for Erlang. http://proper.softlab.ntua.gr/.
31. C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy SmallCheck:

Automatic exhaustive testing for small values. In A. Gill, editor, Proceedings of the
1st ACM SIGPLAN Symposium on Haskell, Haskell 2008, Victoria, BC, Canada,
25 September 2008, pages 37–48. ACM, 2008.

32. J. M. Rushby. Automated test generation and verified software. In B. Meyer
and J. Woodcock, editors, Verified Software: Theories, Tools, Experiments, 1st
IFIP TC2/WG2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10–13,
2005, Revised Selected Papers and Discussions, Lecture Notes in Computer Science
4171, pages 161–172. Springer, 2008.

33. ScalaCheck: Property-Based Testing for Scala. http://www.scalacheck.org/.
34. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for

C. In M. Wermelinger and H. C. Gall, editors, Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal,
September 5–9, 2005, pages 263–272. ACM, 2005.

35. The SWI Prolog Logic Programming System. http://www.swi-prolog.org/.
36. R. Virding, C. Wikström, and M. Williams. Concurrent Programming in Erlang

(2nd Ed.). J. Armstrong, editor. Prentice Hall International Ltd., Hertfordshire,
UK, 1996.

37. N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic gener-
ation of path tests by combining static and dynamic analysis. In M. Dal Cin,
M. Kaâniche, and A. Pataricza, editors, Proceedings of the 5th European Depend-
able Computing Conference, EDCC-5, Budapest, Hungary, April 20–22, 2005, Lec-
ture Notes in Computer Science 3463, pages 281–292. Springer, 2005.

38. G. Xu and Z. Yang. JMLAutoTest: A novel automated testing framework based
on JML and JUnit. In A. Petrenko and A. Ulrich, editors, Formal Approaches to
Software Testing. FATES 2003, Lecture Notes in Computer Science 2931, pages
70–85. Springer Berlin Heidelberg, 2004.

39. K. Yatoh, K. Sakamoto, F. Ishikawa, and S. Honiden. ArbitCheck: A Highly Au-
tomated Property-Based Testing Tool for Java. In Proceedings of the 7th IEEE
International Conference on Software Testing, Verification, and Validation Work-
shops, ICSTW 2014, March 31–April 4, 2014, Cleveland, Ohio, USA, pages 405–
412. IEEE Computer Society, 2014.

http://proper.softlab.ntua.gr/
http://www.scalacheck.org/
http://www.swi-prolog.org/

	Property-Based Test Case Generators for Free

