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Abstract. Yul is an intermediate representation that lies in between
the (high-level) source code and the (low-level) bytecode languages for
Ethereum smart contracts. Although it was proposed to favour the de-
velopment of verification and optimization techniques, there exists no
verifier that can be applied on Yul code directly yet. In this paper, we
present a transformational approach to verifying Yul code by transform-
ing it into an equivalent set of Constrained Horn Clauses (CHCs), lead-
ing, to the best of our knowledge, to the first approach to directly verify
Yul code. Our transformational approach applies the first Futamura pro-
jection, i.e., specializes a Yul interpreter written in CHC with respect
tothe Yul code to be verified. The verification of the transformed CHC
code can rely on existing tools for CHC verification, namely we have used
73 with the SPACER engine on our case studies.

1 Introduction and Motivation

Ethereum smart contracts and their verification have become rather active re-
search topics both because of the novel features introduced by the languages
used in the blockchain context (e.g., their gas model [25] opens new opportuni-
ties for optimization), and also because of the vulnerability of smart contracts
(due to their immutability and public nature together with the fact that they
often hold and manipulate financial assets their verification is crucial). Existing
verification approaches have been developed either at the level of the source-code
or at the low-level bytecode —named Ethereum Virtual Machine code— (abbre-
viated as EVM [25]). At the source-level, being Solidity [23] the most popular
programming language that targets EVM bytecode, there are several Solidity
verifiers [4,13,22,24]. At the EVM bytecode level, there are fewer verification
tools, but still very popular [2,9,19]. While both types of approaches are use-
ful, there is a significant gap in between them: approaches that operate on the
source level may overlook information generated during compilation, whereas
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Fig.1: Overview of the Verification Framework. Grey boxes represent external
tools used in the framework, rounded boxes represent our internal components,
and ellipses denote the input or output generated by external tools.

approaches that work directly on EVM bytecode offer limited guidance for gen-
erating counterexamples or fixing issues at the source level.

Yul [16] has been proposed recently as an intermediate language which lies
in between the source-level Solidity code and the low-level EVM bytecode. Yul
provides a simple syntax and semantics designed to be easily translated into
bytecode, while remaining suitable for manual inspection, formal verification,
and optimization. Unlike the EVM, Yul provides high-level syntax to avoid stack
operations for variable management and low-level jumps in the control flow.
In contrast to Solidity, Yul can be obtained in a Control Flow Graph (CFQG)
and Single Static Assignment (SSA) form (abbreviated as SSA-CFG in what
follows) with explicit opcodes for the computation of expressions. One of the
main purposes of Yul has been to help in the development of verification and
optimization techniques. While Yul-optimization has been the focus of important
efforts within the Solidity compiler team, to the best of our knowledge, there
exists no verification tool yet applicable to Yul directly.

Motivated by the maturity of CHC verifiers [8] (such as Eldarica [12] and
Spacer [15]) and the success of the interpretative approach to transform code
from one language to another, we propose a verification framework from Yul to
CHC based on the first Futamura projection [10] as depicted in Figure 1. As
we will see, the input is a program that can be given in Solidity form which,
importantly, can contain Yul assembly code (1). From there, using the Solidity
compiler (2), we obtain a CFG representation in SSA-form of the Yul code (3).
The next step is to encode as CHC clauses such Yul code (5) using our own code
translator (4). We have implemented, as main contributions of the paper, a CHC
interpreter of Yul (6) and an extension of an existing CHC specializer (7) that
applies the first Futamura projection to generate a set of CHCs (8), representing
the verification conditions (VCs) for checking that all the assertions included
in the source code (1) are met, thereby reducing this verification problem to a
satisfiability problem for CHCs: all the assertions in (1) are met iff the CHCs in
are satisfiable. Then, the satisfiability is proved, if at all possible (in general,
the problem is undecidable), by using an off-the-shelf CHC solver (9). If proved
unsatisfiable, a counter-example can be generated as well @0).

This paper is organized as follows. Section 2 introduces the Yul language and
the CHC interpreter, as well as the CHC encoding of the Yul program under
analysis. The main challenges when developing the interpreter, that will be dis-



cussed in the paper, concern the handling of the different types of memory used
by Ethereum smart contracts and the semantics of EVM operations. Section 3
describes the specializer for CHCs that uses unfold/fold transformation rules
whose application is guided by a strategy dedicated to generating VCs, known
as the VCG strategy [20]. In Section 4 we apply our approach to two case studies
that show the relevance of our work. The first example presents a contract fully
implemented in Solidity; the second, on the other hand, is a contract that incor-
porates blocks of Yul code, showing how our methodology can also successfully
deal with low-level code.

2 The Yul Language and CHC Interpreter

Motivation. Figure 2a presents a simple example of a Solidity program that
includes a fragment written in Yul, inside the assembly block. The program
defines a single contract, Operation, which implements the function Positive-
Difference. This function computes the absolute difference diff between two
non-zero, distinct positive integers, x and y. First, a require statement is used
to enforce that x>0, y>0 and x#y. From these preconditions, it follows that
subtracting the smaller value from the larger can neither underflow nor produce
zero, thus making the assertion diff>0 at line 19 (L19 for short) valid. However,
when analyzed using the model-checker built into Solidity’s compiler (solc),
SolCMC [4], a spurious counterexample is generated: x=1, y=2, diff=0. So1CMC
issues a warning about potential false positives when Yul code is involved, which
explains the inconsistency. Let us note that this version of the contract is more
efficient than one written entirely in Solidity because, in the pure Solidity version,
the compiler solc introduces additional, unnecessary checks, resulting in larger
bytecode. Such efficiency gains motivates the introduction of Yul code within
Solidity programs.

2.1 Introduction to Yul and its SSA-CFG Form

To support reasoning about both Solidity and Yul code, our approach operates on
the Yul SSA-CFG representation shown in the example at Figure 2b. In this rep-
resentation, the control flow is modeled using conditional and unconditional jump
instructions, simplifying the CHC generation for program verification. Yul pro-
grams are typically divided into two parts: one for deploying the smart contract
to the blockchain (Operation, line 1-or L1 for brevity), and another represent-
ing the deployed contract itself (Operation_deployed, L5). Each part includes
a list of basic blocks representing their respective main entry point, blocks (L2,
L6), along with a list of functions, functions (L7). This structure enables us to
identify require and assert statements from the original Solidity code: func-
tions related to these checks are named accordingly (e.g., assert_helper in L17
is the function that enforces the diff>0 assertion). Both the main blocks and
helper functions contain basic blocks comprising all necessary Yul operations.
Each Yul operation receives a set of input values (in) and produces one or more
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contract Operation { 1
2

function positiveDifference(uint256 x, uint256 y) 3
public pure returns (uint256) { 4
require(x > 0 && y > 0 && x !'= vy, 5
"Inputs must be non-zero and different"); 6
uint256 diff; 7

8

assembly { 9
switch gt(x, y) 10
case 0 { 11
diff := sub(x, y) 12

} 13
default { 14
diff := sub(y, x) 15

¥ 16

¥ 17
18

assert(diff > 0); 19
return diff; 20

} 21
} 22
23

(a) Solidity Program, with a Yul fragment 24
25

{"Operation": { 26
"blocks": [...J, 27
"functions": {...J}, 28
"subObjects": { 29
"Operation_deployed": { 30
"blocks": [[...]], 31
"functions": { 32
"fun_positiveDifference": { 33
"arguments": ["v0","v1i"], 34
"entry": "BlockO", 35
"blocks": [{[..] 36

{"in": ["0x00","v27"], a7

"out": ["v28"], "op": "gt"}, 38

{"in": ["v28"], "out": [, 39

"op": "assert_helper"} 10

33, 11
"assert_helper": { 42
"arguments": ["v0"], "entry": "Block0", 43
"blocks": [ 44

{"id": "Block0", "instructions": 45

[{"in": ["vO"], "out": ["vi"], 46

"op": "iszero"}], a7

"exit": { 48

"cond": "vi', 19

"type": "ConditionalJump", 50

"targets": ["Block2","Blockl"] 51

1}, 52

{"id": "Block2", "instructions": []}, 53

{"id": "Block1", "instructions": 54

[{"in": [1, "out": [1, 55

"op": "panic_error_0x01"}]1}1}, 56
"panic_error_0x01": { 57
"arguments": [], "entry": "BlockO", 58
"blocks": [[:], 59

{"in": ["0x01","0x04"], "out": [], 60

"op": "mstore"}, 61

{"in": ["0x24","0x00"], "out": [, 62
"op": "revert"}]}}}}}}

(b) Yul CFG Representation

/ State
globals([]1).
memory ([0x00, 0x04, 0x40]).
JFunction Declarations
fun(init_contract, [1,
[var(v6), var(v2), var(v4d),
var (v3), var(v5), var(v0)],
'init_contract_BlockO_1').

fun(assert_helper,
[var(v0)], [var(v1)],
'assert_helper_BlockO_1').

fun(fun_PositiveDifference,
[var(v0), var(vi)],
[var(v27), ..., var(v28)],
'fun_PositiveDifference_45_Block0O_1').

fun(panic_error_0x01, [1, [J,
'panic_error_0x01_BlockO_1').
/ For fun_PositiveDifference
at('fun_PositiveDifference_45_Block5_4',
asgn(var(v28),
expr (gt ([num(0x00), var(v27)1)))).

nextlab('fun_PositiveDifference_45_Block5_4"',
'fun_PositiveDifference_45_Block5_5').

at('fun_PositiveDifference_45_Block5_5"',
fun_call(assert_helper,

[var(v28)], [1)).

nextlab('fun_PositiveDifference_45_Block5_5',
'fun_PositiveDifference_45_ret').

at('fun_PositiveDifference_45_ret',
ret([1)).
/ For assert_helper
at('assert_helper_BlockO_1',
asgn(var(vl),
expr(iszero([var(v0)1)))).

nextlab('assert_helper_BlockO_1',
'assert_helper_BlockO_jump').

at('assert_helper_BlockO_jump',
cj(var(vl), 'assert_helper_ret',
'assert_helper_Blockl_1')).

at('assert_helper_ret', ret([])).

at('assert_helper_Blockl_1',
fun_call(panic_error_0x01, [1, [1)).
/ For panic_error_0z01
at('panic_error_0x01_Block0_2',
mstore([num(0x01), mem(0x04)1)).

nextlab('panic_error_0x01_Block0_2',
'panic_error_0x01_Block0_3').

at('panic_error_0x01_Block0_3',
revert ([num(0x24), mem(0x00)]1)).

(c) Fragment of the CHC clauses, in
Prolog format, generated from (b)

Fig. 2: Diagram showing the different representations of the source program in
our framework. For (b) and (c), only a fragment of the translation is shown.
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outputs (out). These Yul operations can be either: (1) the application of an
EVM opcode to some arguments, identifying the resulting value (if any) as a
variable; or (2) a jump to a function included in functions. For instance, in
the function fun_positiveDifference (L8), the gt opcode is applied in L12-
L13 to determine whether the positive difference (stored in variable v27) is zero.
This variable is then passed as an argument to the assert_helper function
(L14-L15), which checks whether the argument is zero (L21-L22) and performs
a conditional jump based on the result (L23-L27). If the value is not zero, it calls
the panic_error_0x01 function (L32), which reverts the execution (L37-L38).
Before the revert, a MSTORE operation is executed (L35-L36), storing the value
0x01 in the Memory region. To fully understand the effect of these operations,
we now describe the main features of the EVM. The EVM is a stack machine
that contains 256-bit words, and that manages data through different types of
storage areas®, each with specific purposes and duration.

— Storage: the contract’s persistent memory where data that must survive
between calls and transactions is saved. This region is managed through
SSTORE and SLOAD opcodes.

— Memory: a volatile area that exists only for the duration of the current call. It
is used for temporary operations such as internal calculations or preparing
return data. It can be manipulated through MSTORE and MLOAD opcodes,
among other operations.

— Stack: a volatile area used to store operands and intermediate results during
arithmetic and logical operations. The Yul language does not model the stack
directly but rather introduces local variables (Locals) which are managed
through the operational stack.

In addition to the previous areas, the EVM can access information about the
blockchain state or the current transaction through several opcodes. For in-
stance, opcode CALLER returns the address of the caller of the current function,
CALLDATASIZE returns the byte size of the calldata (the data sent as part of the
transaction) or NUMBER returns the current block number. In our CHC interpreter
we model the Storage, Memory and Locals, as well as the EVM environmental
data.

2.2 Translating the Yul Program to CHC

In this section we present the component (2) of the verification framework shown
in Figure 1, which is responsible for translating the Yul SSA-CFG (3) into CHCs.

Preliminaries. Constrained Horn clauses (CHCs) constitute a class of first order
logic formulas where the Horn clause syntax is extended by allowing the use of
formulas of an arbitrary, possibly non-Horn, constraint theory. In this paper, we
consider CHCs whose constraints are linear integer arithmetic (LIA) expressions.

4 We skip the transient storage area, which has been introduced recently in the Cancun
hardfork [1], as it does not introduce new challenges.



<Program> := <Globals> <Function>" <Clause>"

<Globals> ::= globals([<GlobalElement>*])

<Function> ::— fun(<FuncName>, <VarList>, <VarList>, <Lab>).
<Clause> :=— at(<Lab>,<Cmd>) | nextlab(<Lab>,<Lab>)

<Cmd> ;= <BuiltIn> | <Asgn> | <Jumps> | <FuncCall> | <Ret> | ...

Fig. 3: Syntax of CHCs for encoding Yul programs

A CHC (or simply, a clause) is a universally quantified formula of the form
H < ¢ A L. The conclusion (or head) H is either an atomic formula (atom, for
short) or false. The premise (or body) ¢ A L is a conjunction of a constraint c,
and a (possibly empty) conjunction L of atoms. A fact is a clause of the form
H +c.

Let D be the usual interpretation for the symbols of theory LIA. A set S
of CHCs is said to be D-satisfiable if it has a least D-model. The notion of a
CHC we use in this paper is essentially the same® as the notion of a clause in
Constraint Logic Programming (CLP) [14], whose concrete syntax will be used
to present the CHC encodings and showcase the verification framework at work.

Figure 3 depicts a fragment of the grammar for CHC facts encoding Yul
programs. Commands (<Cmd>) can be built-in operations of Yul (e.g., add,
sub) (<BuiltIn>), assignments (<Asgn>), conditional or unconditional jumps
(<Jumps>), function calls (<FuncCall>), or the <Ret> instruction, which indi-
cates the final instruction of a function and can return zero or more elements.
We adopt the same variable identifiers v that appear in the Yul SSA-CFG, in-
cluding constants. For reasons of efficiency and readability, in the translation,
these variables occur in terms wrapped using different functors, each indicating
the memory region accessed: off (v) for the Storage; mem(v) for the Memory;
var (v) for variables for the Locals. Function definitions are represented by facts
of the form

fun(FuncName, Args, LocalVars, EntryLabel).

where FuncName is the function name, Args is the list of variables passed as
arguments to the function, LocalVars contains the local scope variables used
for internal operations, and EntryLabel defines the point from which to begin
execution (i.e. the label of the first command of the function body). For ex-
ample, function assert_helper in Figure 2c, lines L10-L12, is passed variable
v0 and uses the local variable v1. Its entry label is the command labeled by
assert_helper_BlockO_1 at line L39.

The at and nextlab predicates are used to represent the labeled commands
of the program, and the flow of control, respectively. The at(Lab,Cmd) atom is
used to associate a label Lab to a command Cmd. For instance, the command in
the previous example, at lines L39-L41, is associated with the asgn command
by the following CHC fact:

® The term CHC is often used in the verification context [6], where the focus is on
the construction of models for CHCs. The term CLP also refers to the notion of
execution based on its operational semantics.



at (assert_helper_BlockO_1, asgn(var(vl), expr(iszero([var(v0)])))).

The nextlab(L,L1) atom is used to specify the links between two labels: L1 indi-
cates the label of the command that is written, in the Yul program, immediately
after the command with label L. For example, nextlab(assert_helper_BlockO
_1,assert_helper_BlockO_jump) at lines L43-L44 connects the label of a block
with that of a conditional jump command.

Another relevant aspect to address in the
CHC encoding is the representation of ¢-
functions. In SSA form, these expressions as-
sign fresh variables to values modified along
different paths in the CFG, ensuring every
variable in the program is defined exactly
once. They appear at joint nodes in the CFG

{"entries": ["Block6",
"Block7"],
"id": "Blockb"
"instructions": [
{llinll: [||v23|| ”V24"]
"op":"PhiFunction",
"out": [”V25"]},

1y and have the form xg < ¢(z1 : By,...,2p :
B,,), where 21, ..., x, are values from the pre-

Fig.4: ¢-function in Blockd of (ecessor blocks By,...,B, renamed in the
fun_positiveDifference joint block, and xg represents the resulting

value. switch, if/else, and for statements in Yul introduce ¢-functions to
handle modifications to the same variable across different paths. Figure 4 shows
a ¢-function in Block5 of Operation_Deployed. Here, the field in lists the z;
values, and entries map each x; to their corresponding predecessor block B;.
The variable v25 represents the value of diff, with its value depending on the
branch taken in the switch statement (L10 in Figure 2a): v23 corresponds to
x-y when x > y (L11-L13), and v24 to y-x (L14-L16). The translation of a
¢-function resembles a standard technique used in eliminating ¢-nodes during
the generation of executable code, known as the SSA destruction phase [21]. For
each ¢-node preceded by block B;, the variable x( is assigned the value of z;
immediately after executing B;, ensuring xy holds the correct value based on
the branch taken. This approach preserves the both original control flow and
variable definitions without any loss of information. In the previous example,
the following predicates are generated:

at(Block6_2, goto(Block5_1_5)).

at(Block7_2, goto(Block5_1_6)).

at(Block5_1_5, asgn(var(v25), expr(phiFunction([var(v23)]1)))).

nextlab(Block5_1_5, Block5_2).

at(Block5_1_6, asgn(var(v25), expr(phiFunction([var(v24)])))).

nextlab(Block5_1_6, Block5_2).
Label Block5_1 is split into two different labels: Block5_1_5 and Block5_1_6,
which indicate the corresponding predecessor: Block6_2 and Block7_2, respec-
tively. In both cases, v25 is assigned the appropriate value, and both paths
continue to label Block5_2.



Table 1: Rules for assignment, SSTORE, function call, and conditional jump.

Name Code Explanation

tr(cf(cmd(L, asgn(X, expr(E))), Env),

Encodes the transition (a single execution step) for
cf(cmd(L1, C), Envl)) :-

an assignment command. It evaluates expression

asen eval(E, Env, V), update(Env, X, V, Envl), E, and uses the resulting value to update X in
nextlab(L, L1), at(L1, C). context. Finally it advances to the next command.
tr(cf(cmd(L,sstore(V0,var(V1))),Env), Cf1) :-
lookup_local(V1, Env, K2),
tr(ct(cmd(L, sstore(V0, K2)), Env), Cf1). Encodes the SSTORE command. In the first clause,
lookup_local is used to retrieve the concrete key
sstore tr(cf(cmd(L, sstore(VO, off(Vi))), Env), corresponding to var (V1) into which the value is
cf (cmd (L1, C), Envi)) :- to be stored and recursively invokes the sstore
eval_arg(V0, Env, X0), rule. In the second clause, eval_arg calculates the
update(Env, off(V1), X0, Envi), value to be written and updates the environment.

nextlab(L, L1), at(L1, C).

The function call rule initially invokes the
prologue, which evaluates the arguments and
constructs the configuration for the first label of
the function (entry point). The reach(Cf1, Cf2)
atom encodes reachability from the entry point of
the function to one of its exit points. The exit
points are computed by epilogue, which
distinguishes two alternatives: regular termination
and abnormal termination (error configuration).
For regular termination we can have three cases:
return of values (evaluation and assignment of the
output, advancement of the label), revert and
commit (corresponding to the return opcode).

tr(cf(cmd(L, fun_call(F, InList, OutList)),
Env), Cf3) :-
fun call fun_call_prologue(F,InList,Env, Cfl),
- reach(Cf1, Cf2),
fun_call_epilogue(L,OutList,Cf2, C£3).

tr(cf(emd(L, jumpi(VOo, L1, L2)), Env),
cf(cmd(L1,C), Env)) :-

eval_arg (V0,Env,X0), X0 = 0, at(L1,C). Encodes the conditional jump command: the

variable VO is evaluated for the jump and one of
the two possible destinations is chosen according to
that value (0 or 1).

jumpi
tr(cf(emd(L, jumpi(VOo, L1, L2)), Env),
cf(cmd(L2,C), Env)) :-
eval_arg(V0,Env,X0), X0 =\= 0, at(L2,C).

2.3 CHC Interpreter of the Yul Language

In our CHC interpreter for Yul programs (component (6)), the operational
semantics is defined by a predicate tr, which represents the transition relation
that leads from a configuration, a program execution state, to a new configura-
tion, when a Yul command is executed. Configurations are represented as terms
of the form: cf (cmd(Lab, Cmd), (D, M, S)) where Lab is a program label and
Cmd is the command with that label. The (D,M,S) tuple is used to represent the
storage areas of our program as described in Section 2.1, where:

— D represents the area that includes both the execution context data and the
Storage, providing globally accessible variables at every point in the code;

— M represents the Memory area;

— S represents the set of local variables in the Locals: they can only be accessed
within the context of the function in which they are declared.

In Table 1 a selection of the most representative rules in our interpreter is
shown and Table 2 describes some auxiliary predicates used in the former transi-



Table 2: Auxiliary Rules.

Name Code Explanation

Represents the evaluation of an expression E in the envi-

eval(E, Env, V) ronment Env, yielding the value V

eval

eval (add([VO,V1],Env,V2)) :- The eval rule for addition. Similar rules are defined for
eval_arg(V0, Env, Y0), other arithmetic and bitwise operations (mul, div, and,

eval_arg(Vl, Env, X0), or, not, shl, shr, ...) for a total of 86 clauses.
V2 = X0 + YO

update(Env, X, V, Env1) holds if Env1 is obtained from
update update(Env, X, V, Envil) the environment Env by assigning the value V to the pro-
gram variable X

nextlab pextlab(L, L1) Holds if L1 is the label immediately following L

at at (L1, C) Holds if Cmd is the corresponding command

Retrieves the value V of X in the corresponding component

eval ar
val_arg eval_arg(X, Env, V) of the environment Env according to the scope of X

tion rules. Some predicates, such as eval, which is used for evaluating arithmetic
expressions, do not explicitly modify the configuration, but base their evalua-
tion on the current configuration and the results they produce indirectly affect
the new configuration (e.g, the result of an arithmetic operation will be used
to update the environment). Note that, since we consider a multistep seman-
tics [5], the tr clause for the function call is defined in terms of configuration
reachability.

reach(Cf,Cf).
reach(Cf1,Cf3) :- tr(Cf1,Cf2), reach(Cf2,Cf3).
We have that reach(C£1,C£3) holds if C£3 can be reached from Cf1 by zero or

more steps (i.e. the reach predicate is the reflexive and transitive closure of the
tr predicate).

3 Verification Conditions Generation by CHC
Specialization

In this work we focus on the problem of checking whether all the assertions
included in a Yul program p are met, and we propose an automatic verification
method that reduces it to a satisfiability problem for CHCs.

Let us consider the following clause

false :- initConf(Cf1), reach(Cf1,Cf2), errorConf(Cf2). (@)

where: (i) C£1 represents an initial configuration, that is, the state of the EVM
where the smart contract has been successfully deployed on the blockchain, (ii)
reach represents the interpreter I for Yul programs presented in Section 2.3,



and (iii) C£2 represents an error configuration, that is, a call to the function
panic_error_0x01 resulting from a violation of the condition included in an
assertion of the Yul program under analysis. Now, checking whether the asser-
tions in a Yul program p are met reduces to checking the satisfiability of CHCs
as follows. Given a set P of CHC facts encoding p (see Section 2.2), the Yul
interpreter I (see Section 2.3), and the clause @, we have that all the assertions
included in p are met if and only if the set of CHCs P U T U {Q} is satisfiable.

State-of-the-art CHC solvers struggle at checking satisfiability of CHCs that
contain complex terms, such as lists, that occur in the Yul interpreter to repre-
sent commands and environments. Thus, we apply the satisfiability-preserving
unfold / fold CHC transformation rules to specialize it and remove the level of
interpretation which is present in I. The specialization process realizes the first
Futamura projection and produces a set VC of CHCs, called verification condi-
tions (or VCs, for short), such that VC'is satisfiable if and only if PUTU{Q} is
satisfiable. Moreover, since the generated VCs contain variables and constants
only (see Fig. 6), CHC solvers can check their satisfiability more easily.

During CHC specialization we apply the following transformation rules: un-
folding, definition introduction, and folding, according to the Verification Cond;i-
tion Generation strategy (VCGQ), similarly to what has been done for C programs
in [5]. The rules and the strategy are described in the following subsections.

3.1 The CHC Transformation Rules

Let us first recall the definition of the transformation rules used by the specializer
(component (7) in Figure 1).

Unfolding. The unfolding rule replaces an atom in the body of a clause with its
definition, and is conceptually similar to inlining in imperative programming.

Let C be a clause of the form H :- ¢,L,A,R, where H and A are atoms, L and
R are (possibly empty) conjunctions of atoms, and c is a constraint. Given a set
P of CHCs, by unfolding atom A in the body of C we replace C by the set of
clauses obtained by applying one resolution step rooted in A with respect to the
clauses in P whose head unifies with A. We denote by Unf(C,A) the set of CHCs
obtained by unfolding.

The application of the unfolding rule in the VCG strategy is guided by an
annotation function that tells us whether or not a clause should be unfolded with
respect to an atom in its body. This annotation guarantees that the number of
applications of the unfolding rule is finite.

Definition introduction. A new predicate newr is introduced by the clause:
newr (X) :- reach(cfl,cf2), where X is a tuple of all variables occurring in
the terms cf1 and cf2 representing configurations. Clauses introduced by the
definition introduction rule are called definitions.

Folding. The folding rule is a special case of an inverse of the unfolding rule.
Let C be a clause H :- e,L,B,R and let D be a definition newr (X) :- A such
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that for some renaming substitution 6, D@ is of the form newr(Y) :- B. Then
C is folded with respect to B by using D, thereby deriving the new clause H : -
e,L,newr(Y),R.

Notably, this version of the folding rule is less general than that in [5], but
has simpler applicability conditions and is suitable for VC generation.

3.2 The VCG strategy

The transformation rules are applied according to the VCG strategy shown in
Figure 5. It takes as input the set PUIU{Q} and produces as output the equi-
satisfiable set VC of verification conditions shown in Figure 1. The strategy
keeps a set Is of CHCs to be specialized and a set Ds of definition clauses.

Ds:=0; VC:=0; Is:={Q};
while there exists a clause C in Is with an atom in its body
(unfold) Let A be the leftmost atom occurring in the body of C.
Us := Unf(C, 4);
while there exists a clause D in Us whose body contains an unfoldable atom B
Us:= (Us\ {D}) U Unf(D,B);
(define and fold) Let Us be the clauses obtained by unfolding.
while there exists a clause E in Us of the form: H :- e, L, reach(cf1,cf2),R
Let F be the clause obtained by folding reach(cf1,cf2) in E
using a suitable definition D.
VC:= VCU{F};
if (a variant of) D is not in Ds then
Ds:= DsU{D}; Is:=IsU{D};

Fig.5: The VCG strategy

The strategy terminates when all clauses in Is have been processed, and no
new definitions are introduced.

Correctness of the VCOG strategy. We say that VCG strategy is correct in the
sense that the CHCs it produces as output are equisatisfiable with respect to
those provided as input. This is a direct consequence of the correctness of the
transformation rules with respect to the least model semantics [5]. In particular,
if the VCG strategy terminates on the input set of CHCs P U I U {Q} thereby
producing the output VC, then P U T U{Q} is satisfiable iff VC is satisfiable.

Termination of the VCG strategy. The unfolding annotation for VCG marks as
unfoldable all atoms except those of the form reach(cf(cmd(L, Cmd),_Env),
_Cf2) where L is the label of the entry point of a function or Cmd encodes
the conditional jump command (jumpi). Thus, possibly recursive function calls
and conditional jumps (used for encoding loops) are unfolded in a controlled
manner and the (unfold) phase of VCG is guaranteed to terminate. Moreover,
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the (define and fold) phase is guaranteed to terminate because only a finite
number of new definitions is introduced. Indeed, the definition introduction rule
introduces new clauses of the form new(X) :- reach(cfl,cf2), where X is the
tuple of variables occurring in cf1 and cf2. The new definitions abstract away
the constraints representing the actual parameters provided to functions and the
expressions occurring in conditional jumps, and therefore can be used to fold all
atoms representing different calls to the same function or the same loop head.
Consequently, the maximum number of definitions that can be introduced by
the VCG is equal to the sum of the number of functions and conditional jumps
occurring in the program. Thus, the VCG strategy terminates.

For the sake of efficiency, when there is no risk of non-termination, we call
some atoms instead of fully unfolding them.

Each step of the verification pipeline shown in Figure 1 is fully automatic,
except for the task of specifying the initial configuration, that is, the label of
the first instruction of the function under analysis and its call context. The
interpreter and the specializer, which have been implemented as a module of the
VeriMAP system [7], are available at https://github.com/chc-lab/yul-chc.

3.3 Example application of the VCG strategy

Let us show the application of the VCG strategy on the property we are studying

for contract Operation in Figure 2. After some iterations, the VCG strategy

reaches the conditional jump (jumpi) encoding the switch statement shown in

Figure 2a at L10, and therefore introduces the following definition D_jumpi
jumpi(A,B,...,U,...) :- reach(

cf( cmd(..., jumpi(var(v24), caseO, default)), (1)
([(’msg.value’,A),...]1,[(0,B),...]1,[...,(v24,1),... 1)), (2)
cf( cmd(panic_error_0x01,abort),...)) ). (3)

The term at line (1) encodes the configuration whose command is the condi-
tional jump (jumpi). According to the value of var(v24), it either jumps to
the command at label case0 or to the command at label default. The term
at line (2) encodes the environment mapping storage and memory locations, as
well as local variables, to their values (e.g., (v24,U) maps the local variable
v24 to its value represented by the logic variable U). Finally, the term at line
(3) encodes the error configuration whose command is abort and whose label is
panic_error_0x01 (the final environment is omitted). The error configuration
has been introduced in the interpreter for verification purposes and, in the rest
of this section, we will use errCf to denote it.

Then, the VCG strategy proceeds by unfolding the atom reach(cf(...),
errCf) occurring in the definition of the predicate jumpi. After some unfolding
steps, we obtain the following two clauses.

jumpi(A,B,...,U,...) :- U=0, reach(cfCase0,errCf).

jumpi(A,B,...,U,...) :- U=1, reach(cfDefault,errCf).
where U is a logic variable whose value is 0 if gt(x,y), and 1 otherwise, and
cfCase0 and cfDefault are configurations representing the two alternative
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branches of the switch command. In particular, the command occurring in
cfCase0 is asgn(var (v26) ,expr (sub([var(vl) ,var(v0)]))), encoding the Yul
statement diff := sub(x,y) at L12 of Figure 2a. Similarly, the command oc-
curring in cfDefault is asgn(var (v26) ,expr (sub([var(v1l) ,var(v0)1))), en-
coding the Yul statement diff := sub(y,x) at L14 of Figure 2a. The unfolding
process stops when no clause contains atoms that are annotated as unfoldable.
One of the clauses obtained by unfolding is a clause, say U_jumpi_1, of the form:
jumpi(A,B,...,U,...) :- U=0, GI1=F-E, ...,
reach(cf(cmd(...,fun_call(cleanup_t_rational O_by_1,...),...),
cf(cmd(...,ret([var(v4)1)),...)) ),
reach(cf (cmd(assert,asgn(var(vl) ,expr(iszero([var(v0)1)))),...),
errCf)).
Recall that, for function calls, the fun_call_epilogue predicate of the in-
terpreter considers two alternatives: the regular termination of the function
and its abnormal termination leading to the error configuration. Indeed, clause
U_jumpi_1 contains two reach atoms. The first one represents the regular ter-
mination of cleanup_t_rational_O_by_1, producing as result v4, whereas the
second atom represents the abnormal termination of the helper function assert.
Note that assert is responsible for the evaluation of the condition diff > 0 at
line 9 of Figure 2a: if the condition does not hold, it calls the auxiliary func-
tion panic_error_0x01 leading to the error configuration errCf. Now, the VCG
strategy introduces two additional definitions :
cleanup_t_rational _O_by_1(...) :-
reach(cf(cmd(...,fun_call(cleanup_t_rational O_by_1,...),...),
cf(emd(...,ret([var(v4)1)),...)) ).
assert_ERR(...) :-
reach(cf (cmd (assert,asgn(var(vl) ,expr(iszero([var(v0)1)))),...),
errCf)) .
and uses the new definitions to fold U_jumpi_1 as follows:
jumpi(A,B,...,U,...) :- U=0, GI1=F-E, ...,
cleanup_t_rational_O_by_1(...), assert_ERR(...).
The VCG strategy continues by performing the (define and fold) step on the
other clauses obtained from the (unfold) step. The complete specialization of
the definition D_jumpi is shown in Figure 6. On the left side, we show the CHCs
for case 0, with the constraints U=0 (gt(x,y) holds) and G1=F-E (diff :=
sub(x, y)). As already mentioned, clauses at line 1 and 6 represent the regu-
lar termination of cleanup_t_rational_O_by_1 and the abnormal termination
of the helper function assert, respectively, and differ only for the constraints
obtained by the evaluation of comparison statements included in the function
positiveDefinition. The clause at line 11 represents the abnormal termination
of cleanup_t_rational_O_by_1. On the right side, we show similar CHCs for
the default case, with the constraints U=1 (gt (x,y) does not hold) and F1=E-F
(diff := sub(y, x)).
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jumpi(A,B,E,F,U,...,E1,F1,G1) :- 14 jumpi(...) :-

U=0, G1=F-E, G1>E1, F1=1, ..., 15 U=1, G1=E-F, GI1>E1l, Fi1=1, ...,
cleanup_t_rational_O_by_1(...), 16 cleanup_t_rational_O_by_1(...),
assert_ERR(...). 17 assert_ERR(...).
18
Jumpi(...) :- 19 jumpi(...) :-
U=0, G1=F-E, G1=<E1, F1=0, ..., 20 U=1, G1=E-F, G1=<El1, F1=0, ...,
cleanup_t_rational_O_by_1(...), 21 cleanup_t_rational_O_by_1(...),
assert_ERR(...). 22 assert_ERR(...).
23
jumpi(...) :- 24  jumpi(...) :-
U=0, G1=F-E, ..., 25 U=1, G1=E-F, ...,
cleanup_t_rational_O_by_1_ERR(...). 26 cleanup_t_rational_O_by_1_ERR(...).

Fig. 6: CHCs obtained from the specialization of jumpi presented in Section 3.3,
corresponding to the switch statement in the Yul code.

4 Case Studies

Let us show the relevance of our work on two case studies. The first, Auction,
analyzes a smart contract extracted from the article [18], while the second,
Splitter, examines a modified version of the PaymentSplitter [17] from the
popular OpenZeppelin smart contract, which includes inline assembly. For each
case study, we start with an initial configuration C£1 and show that no execution
path can lead to an error configuration C£2.

The Auction contract in Figure 7 .iract auction f
implements a simple auction in Solid- ~ uint public bid = 0;
ity: bidders send Ether, from which z;z;ezzb;:;aﬁi:hpibﬁc winner:
a net bid (new_bid) is calculated,

which must exceed the current stored

constructor() {
winner = payable(address(0));

one. If there is a previous winner, }

the contract checks that the balance ¢y, ction otfer() public payable {

(cash) is sufficient to repay it, makes uint ﬂe‘r('-bid = msg'vaiue - 1015 wei;

i _bid > bid);

the transfer, and updates the sta- requinetnen-oY '

tus. Here, require (new_bid > bid) if (winner(!= payable(;ddress(o))) {
o, e . t(bid <= h) ;

acts as a precondition, verifying that :iizzr.t;mfeiﬁidh

the incoming bid is indeed higher ) cash -= bid;

than the current bid before continu-

ing. Only if this condition is met, the bid = new_bid;

cash += msg.value;

flow continues. The block if (winner winner = payable(msg. sender) ;

!= address(0)) determines whether 1}
it is a bid following the first bid: only
in this case is the previous winner re-
funded. assert(bid <= cash) is a post-condition and at the same time a con-
tract invariant, which guarantees that the internal state (cash) is always suffi-
cient to cover the amount to be returned (bid). If by a logical error the state is
inconsistent (e.g. cash < bid), the assert will fail and cause irreversible revert,
signaling a critical bug. In this way, require protects the input conditions, while
assert ensures that the financial correctness invariant of the contract remains

Fig. 7: Auction contract
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valid once the internal transactions are executed. For this specific example, the
initial configuration used in clause ) of Section 3 is defined as follows:

Cf1l = cf(cmd(external_fun_offer_85_Block0_3,
fun_call (fun_offer_85, [1, [1)), Envl)

which corresponds to the initial configuration where, in the post-deployment en-
vironment (Env1), a call is made to the fun_offer_85 function (the function
under consideration which contains the assert). An equivalent version of this
same contract, in which some operations were replaced by bytecode, was sub-
jected to the same verification process: the results obtained exactly match those
of the original Solidity contract, confirming the unique ability of our approach
to handle contracts in both source code and bytecode.

The Splitter contract (see the full con-
tract in the repository) allows funds to

function releasable(address account)
public view returns (uint256) {

require(msg.sender == account); be split between three predetermined ad-
require(account == payee0 . _
| account — payeel dresses, each with a fixed payee quota de
| account == payee2); fined at the time of creation. Each time

require(totalShares > 0);

require (amountp0 >= released0
&& amountpl >= releasedl
&& amountp2 >= released2);

uint256 sumPend; uint256 yours;

assembly {
for { let i := 0 } 1t(i, 3)
{4i:=add@i, 1)} {
let payee := sload(i)
let amount := sload(add(6, i))
let rel := sload(add(9, i))

let pend := sub(amount, rel)
sumPend := add(sumPend, pend)
if eq(payee, account)
{ yours := pend }
}
}
assert (address(this) .balance
>= sumPend) ;
return yours;

Fig. 8: Releasable function

one of the three payees sends ETH to
the contract, the receive function checks
that the sender’s address matches one of
the stakeholders and that the amount de-
posited is exactly equal to its share, ac-
cumulating the total amount deposited for
each stakeholder. To check how much re-
mains to be withdrawn, each payee may in-
voke the releasable function (Figure 8)
which, in assembly, iterates over the three
addresses, calculates the difference between
the amount paid in and the amount already
released for each, and identifies the amount
due. To ensure the integrity of the state, a fi-
nal assert in the releasable function ensures
that the balance of the contract is at least

equal to the sum of all outstanding amounts,
preventing inconsistent conditions. The release function then allows the payee
to withdraw a validated amount: it checks, via require, the origin of the call,
the contract balance, the positive amount and compliance with the limit calcu-
lated by releasable, and then updates the released counters and transfers ETH
with call. For this specific example we define:

Cf1 = cf(cmd(external_fun_releasable_259_Block2_3,

fun_call (fun_releasable_259, [var(v0)], [])),Envl),

where v0 is the variable representing the value passed as input to the function.
Our verifier confirms that the property holds as expected. As with contract
Operation in Figure 2, the version of this contract written entirely in Solidity
is less optimized than the one including Yul code, making the Yul-based version
more desirable for deployment and more used in practice by smart contract
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developers. However, as we have noted before, there is no other tool that can
verify Yul code.

5 Conclusions, Related and Future Work

We have proposed a transformational approach to the verification of Ethereum
smart contracts which consists in transforming their intermediate Yul represen-
tation into an equivalent CHC program which can be directly used as input to
off-the-shelf CHC verifiers (like Eldarica [12] or Spacer [15]). Our work is based
on the interpretative approach to compilation [10,6] which has been successfully
applied to transform low-level code into higher-level representation (e.g., trans-
forming Java bytecode to CHC [11]) and to transform from one high-level code
to another (e.g., transforming C to CHC [5] and other imperative programs [20]).
The advantages of the interpretative approach include, among others, faster de-
velopment time as —assuming that a specializer is available (as it was in our
case)— one just needs to implement the Yul interpreter in CHC, as well as higher
reliability in the correctness of the implementation as —assuming that the spe-
cializer is a trusted component— one just needs to ensure the correctness of the
interpreter implementation.

On the one hand, compared to existing verifiers for Ethereum smart con-
tracts [4,13,22,24], we are behind their capabilities as some of them are being
developed already for a number of years and are able to prove complex proper-
ties such as callback freeness [3]. Our work is a first step towards the direction of
building a strong verifier able to prove complex properties as well. On the other
hand, our work is covering an important gap in the verification of Ethereum
smart contracts as there is no other tool able to directly analyze Yul code yet.
However, Yul is being proposed by the Ethereum community as the target lan-
guage for high-level optimization and analysis stages so that all target platforms
equally can benefit from progress at the Yul level. Hence our work has the po-
tential of providing such benefits to all target platforms as well.

Finally, while our work is based on the VCG approach in [5] for C programs,
they differ in some significant aspects. First, the interpreter has to take into
account the Yul syntax and semantics as well as the EVM memory model, which
contains blockchain-specific components, and the management of the different
ways in which the execution of a Yul function can terminate (ret, commit, revert,
error). There are important differences as well between the VCG strategy for Yul
and C: (1) the unfolding annotation for C programs considers as non-unfoldable
the entry points of functions and conditional jumps, as well as the junction
points of conditional jumps. However, for Yul, the junction points are not directly
recognizable thus in the current version of the strategy we do not consider them;
(2) the VCG strategy for Yul requires extending the unfolding annotation to
keep track of atoms that are associated with the contract deployment phase on
the blockchain; (3) the VCG strategy for C programs makes use of additional
annotations that help to reduce the number of new predicate definitions as well as
the number of their arguments. For instance, the VCG strategy can be configured
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to use annotations that keep track of (i) the absence of side-effects for functions
thus reducing the number of variables for predicates, and (ii) to the impossibility
for auxiliary functions of reaching an error configuration thus reducing non-
determinism and the number of clauses. This fine tuning of the VCG strategy for
C programs was instrumental to achieve the optimal time and space complexity
presented in [5]. For Yul, we aim to extend the strategy to get similar results
in the near future. Besides, although we have implemented all components of
the overall verification framework, namely the translator from Yul to CHCs,
the Yul interpreter and the adaptations required in the specializer, we have not
automated the overall process yet. Our current work is focused on implementing
the full pipeline that connects all components as well as making a thorough
experimental evaluation using real contracts.
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