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Abstract—This paper presents a knowledge-based technique
for mapping task-based applications onto heterogeneous comput-
ing resources using Answer Set Programming (i.e., ASP) for dy-
namic, multi-objective task allocation. Our method models appli-
cations through the Actor Model, considering device constraints,
task workloads, and performance factors like computational
overload and inter-actor communication costs. By formulating
these elements as logical rules, our ASP-based method adapts
allocations to changing workloads and system dynamics, nearing
the theoretical optimum achievable by an oracle with complete
knowledge. Simulation experiments show that our approach sig-
nificantly outperforms (up to 45%) traditional static partitioning
techniques by maximizing throughput and preventing unfruitful
migrations. These results highlight the effectiveness of declarative
optimization for online allocation in heterogeneous architectures,
and suggest that a clear syntax for modelling non-functional
metrics eases the extrapolation of a broad set of optimization
scenarios.

Index Terms—Heterogeneous Architectures, Answer Set Pro-
gramming, Resource Allocation

I. INTRODUCTION

Task-based applications decompose computational work
into discrete units called tasks, namely independent operations
that can be executed in parallel on multicore or distributed
architectures. Each task is modelled as a self-contained entity,
and the system dynamically manages the execution order and
resource allocation by considering the dependency relations
defined between the tasks. This approach is particularly ef-
fective in domains such as scientific computing, large-scale
data processing, and simulation systems, where workloads
can be naturally partitioned into separate operations [1]. The
overall performance improves as tasks run concurrently, but
ensuring that the workload is balanced across the different
computational units can be challenging.

This scenario is depicted in Figure 1. Tasks in the same ap-
plication can differ in execution characteristics and workload
profiles, so imbalances in workload distribution can reduce
overall application efficiency: if certain tasks wait excessively
for resources while others complete too early, underutilization
and extended execution times occur [2]. Differences in pro-
cessor speed can also exacerbate this problem.

Heterogeneous architectures composed of distinct comput-
ing units, such as CPUs, GPUs, or specialized accelerators,
can improve performance for task-based applications suffer-
ing from workload imbalance. Assigning computationally-
intensive tasks to more powerful units and I/O-bound or
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Fig. 1: Three processors execute dependent tasks. P0 spends
most of its CPU time waiting for new tasks to be generated,
leading to high idle time. P2, which is faster at processing, is
underutilized even though more tasks are allocated to it. By
adjusting the task-to-processor mapping, we can reduce both
sources of inefficiency.

lighter tasks to general-purpose resources exploits the re-
spective strengths of the heterogeneous components [3]. This
strategy can reduce idle times and improve overall efficiency,
but it must be handled carefully if the workload profile of
the tasks changes over time. In this case, some form of
adaptive resource allocation is required, which is anyhow
complex because it requires continuous decisions based on
dynamic conditions and complex constraints imposed by task
dependencies.

In this work, we tackle the problem of providing an adaptive
optimal task allocation on heterogeneous systems at runtime,
independently of the particular runtime environment used to
orchestrate task execution. We consider applications where
tasks are processed by stateful jobs that exchange (dependent)
tasks. We explicitly consider limiting constraints in the appli-
cation, such as the impossibility of running a job on a subset of
the devices due to technical limitations (e.g., invoking system
calls on a GPU) or due to partially missing implementations.
The allocation on the heterogeneous devices can be enforced
by migrating the jobs (and their state) across the devices,
considering performance metrics based on the exchange rate
of tasks between the jobs, the workload profile of the tasks,
and their number, as it has been already recognized in the
literature as a viable approach (see, e.g., [4], [5], [6]).

Task-based applications can vary widely in terms of the
number of tasks they involve and their processing profiles.
Similarly, the underlying hardware architecture used to run
these applications can differ significantly. Our goal is to
remain independent of the specific types of applications and



hardware support, so as to concentrate on optimizing the
mapping of tasks to processors. For this purpose, we rely
on an abstraction based on the Actor Model [7], which has
recently been shown to be effective in managing task-based
applications on heterogeneous architectures [8]. According to
this abstraction, jobs are generically considered actors, and
tasks are generically mapped to messages exchanged between
actors.

A task-based application described in terms of the Actor
Model is then processed by an adaptive optimization mod-
ule named Actor Placement Optimizer (APO), and based
on Answer Set Programming (ASP). ASP is a declarative
problem-solving methodology introduced in the domain of
symbolic AI [9], [10] which supports rapid prototyping. APO
evaluates sets of logical constraints to generate optimal actor-
to-device assignments. Indeed, the ASP language includes
optimization statements supporting the declaration of multi-
objective strategies for dynamic resource management. In our
context, when the workload profile changes over time, APO
can adapt the task allocations to the constraints the infras-
tructural heterogeneity imposes, for example, by balancing
execution time or reducing communication overheads.

We report an experimental study that evaluates our proposal
in the context of several scenarios for dynamic task allocations.
Each scenario refers to a different set of simulated traces
replayed through a dedicated evaluation framework, which
uses APO to identify an optimal resource allocation under
several optimization objectives. We compare the results from
APO against solutions obtained using METIS [11], a well-
established graph partitioning and load-balancing tool. As we
will show, the multiple optimization objectives proper of our
allocation problem are difficult to capture with METIS, which
can deal with multiple constraints only if managed explicitly
using some ad-hoc weighting function. Conversely, APO can
easily attack multi-objective optimization problems. Moreover,
we compare the results against the theoretical optimum com-
puted over the entire execution traces, and random allocations
for a significance control.

The results for this study demonstrate that APO effectively
accounts for complex dependencies and constraints, achieving
improved performance without requiring the introduction of
complex weighting functions, thus also serving as a workbench
for the definition of multiple optimization strategies.

Overall, the main contributions of this work are:
1) the formal modeling of task-based applications via the

Actor Model, which includes the encoding of device
constraints, task workloads, communication costs, and
inter-actor dependencies as logical rules, to drive online
allocation decisions;

2) the definition and integration of three key performance
metrics (i.e., computing-unit overload, inter-device com-
munication cost, and inter-actor annoyance) within prior-
itized ASP optimization statements to maximize through-
put;

3) the use of an ASP-based technique for dynamic, multi-
objective task allocation in heterogeneous architectures,

capable of near-optimal runtime adaptation to workload
and system changes;

4) an extensive simulation-based evaluation demonstrating
that the ASP-driven approach can closely match the
theoretical optimum.

We release APO as open source software1. The remainder
of this paper is structured as follows: Section II describes
the context and the background information referred to in the
work. The APO method is presented in Section III. Section IV
presents our comparative experimental evaluation, and the
threats to the validity of the study are reported in Section V.
Related work is discussed in Section VI.

II. CONTEXT AND BACKGROUND

In this section, we introduce the formalism and the reference
interaction model that we use to build APO. Then we also
provide a motivational example of a class of applications
that break down complex problems into parallel tasks. This
example is used later in Section III to illustrate the proposed
multi-objective strategy for actor-to-device allocation.

A. Answer Set Programming

ASP is a rule-based declarative programming language orig-
inating from the fields of knowledge representation, nonmono-
tonic reasoning, logic programming, and constraint solving.
Also, ASP has been proven to be a well-suited tool for
dealing with knowledge-intensive and combinatorial search
problems [9], [12].

By following a declarative problem-solving approach, an
ASP program specifies a set of rules that describe a compu-
tational problem in the ASP language. A model for the ASP
program, also called answer set, is a solution that satisfies all
the rules in the program. Answer sets can then be computed
by using an off-the-shelf ASP solver, such as Clingo [10],
without requiring to specify an ad-hoc algorithm to solve it.

The declarative nature of ASP, combined with the opti-
mization statements provided by the language, makes it a
convenient tool for dynamic resource management for hetero-
geneous architectures. To ease the reading, we will introduce
the ASP language along with the presentation of the imple-
mentation of the optimization module in both Section III-A,
and Section III-B.

B. The Actor Model

The Actor Model [13] is a concurrent software architectural
paradigm structured around autonomous entities called actors,
each interacting with the environment exclusively through
message passing. This design eliminates the need for explicit
thread synchronization by ensuring that each actor processes
messages sequentially while maintaining an isolated inter-
nal state. Actors can independently operate across multiple
processing elements, thus effectively capturing parallel or
distributed execution.

The Actor Model can be used to abstract task-based appli-
cations by mapping tasks to actors, which allows for dynamic

1https://github.com/DomainProject/apo
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task management and efficient execution across heterogeneous
resources. Messages can facilitate task communication, en-
abling synchronization, data transfer, and dependency reso-
lution. This allows tasks to be retried or reallocated inde-
pendently without disrupting the overall system. The model’s
expressiveness can be used for workload distribution, ensuring
sustained performance by dynamically routing messages and
adapting to fluctuating resource availability, thus optimizing
computational resource usage.

APO uses the Actor Model to abstract underlying complex-
ities: it allows designers to focus only on application logic,
its constraints, and on the overall hardware configuration. The
runtime environment periodically queries APO in order to face
evolving conditions or emerging constraints; thus, it handles
dynamic allocation based on the decisions of APO.

C. Motivating Example

To simplify the discussion of the optimization methods
presented in this work, we introduce a reference example
centered on real-time image processing for video surveillance,
as an instance of task-based applications that we tackle.
In this example, a security camera continuously streams a
high-resolution video at 30 frames per second, which then
undergoes several processing phases to detect different classes
of objects in the stream. The application is organized as
in Figure 2. Each part of the application is an actor that
exchanges messages. The payload of a message is the output
from an actor, which is processed by the recipient actor.

We consider three different classes of tasks [14]. The first
class (i.e., crop) deals with the identification of some region
of interest to carry out the detection; the second class deals
with actual object classification in some region; the last class
performs object localization in the original frame. Each job
executes tasks belonging to a single class.

When processing a task belonging to the first class, each
frame (represented as a matrix of pixels) is cropped into
smaller submatrices of different sizes (tiles). A multi-scale
sliding window approach is used to cover the whole frame
area with each submatrix.

For each identified region of interest, the detection system
applies several classifiers to detect whether the submatrix
depicts a target object or not; we assume that each classifier
is able to recognize one class of objects. This activity is
performed by the second class of tasks (i.e., classify).

The last class of tasks (i.e., localize) concerns the gener-
ation of (different) bounding boxes for each of the classified
objects and their positioning on top of the original frame. A
bounding box is labeled with the category the object belongs
to; also, it can include other semantic information resulting
from the classification task.

A heterogeneous architecture, comprising CPUs and various
accelerators, can dynamically allocate tasks based on system
load and frame complexity. Computationally intensive tasks,
such as handling high-resolution tiles or performing complex
classifications, might cause node overload conditions if not
managed correctly. For instance, assigning high-complexity

classifications exclusively to the very same single processor
could lead to its overload, resulting in idle times and under-
utilization of other processing nodes, as previously illustrated
in Figure 1.

Therefore, an efficient strategy involves moving around
intensive computational tasks to more powerful nodes (e.g.,
GPUs) whenever they are idle, while simultaneously assigning
smaller or less demanding tiles to CPUs. This balanced alloca-
tion reduces overload conditions on any single node, ensuring
continuous and efficient utilization across the architecture, thus
achieving the desired throughput of 30 frames per second.

Notably, frame-cropping and region-based object classifi-
cation tasks can generally proceed in parallel as long as
tasks remain available for processing. In contrast, bound-
ing box generation inherently depends on completing these
preceding tasks. Specifically, accuracy in object localization
benefits from multiple processed submatrices, as overlapping
sliding windows around the same object produce multiple
candidate bounding boxes, from which the optimal fit is
selected. Additionally, generating bounding boxes involves
accessing the entire frame, and aggregating object locations
efficiently reduces redundant processing of the whole frame,
mitigating potential overload scenarios. This condition creates
a dependency between tasks that, if not managed carefully,
could exacerbate resource underutilization.

This simplified scenario serves as a practical backdrop
for illustrating how ASP-driven task orchestration optimizes
performance by balancing workload distribution, maximizing
frame throughput, and minimizing latency in heterogeneous
environments.

III. KNOWLEDGE-BASED OPTIMAL ALLOCATION

The goal of APO for dynamic resource management is to
find an optimal allocation of actors to computing units, that is,
an allocation that aims to enhance the computational efficiency
of the application. It makes use of ASP rules to specify the
logical constraints that the allocation must satisfy.

In the following, Section III-A introduces the actor alloca-
tions modeled in terms of ASP rules, Section III-B reports
the heuristics that guide the overall allocation strategy, while
Section III-C presents in detail the key concept of annoyance.

A. Modeling the Actor Allocations

ASP rules are implications of the form head :- body
stating that if all the (positive or negative) literals in the body
are true, then the atom in the head is true. Rules with an
empty body, called facts, represent the knowledge available
about the execution environment, such as the computing units,
the types of these devices, the actors, and their workloads.

In particular, computing units and actors are encoded2 in
ASP by facts of the form cu(U) and actor(A), where U
and A are logic variables ranging over the sets of computing
units available in the hardware platform and the identifiers of
actors to be executed, respectively. Specifically, with respect

2The ASP encoding is presented using the syntax of the ASP solver
Clingo [10].



Fig. 2: Pictorial representation of the motivating example.

to the motivating example described in Section II-C:
we can use the facts cu(cpu1) . . . cu(cpuN),
and the facts cu(gpu1) . . . cu(gpuM) to assert
that overall the referred heterogeneous architecture
respectively includes N CPUs, and M GPUs. In addition,
facts like: actor(crop1) . . . actor(cropK),
actor(classify1) . . . actor(classifyZ), and
actor(localize1) declare that the real-time image
processing is composed of K actor instances for cropping
tasks, Z actor instances for classification tasks, and only an
actor instance for positioning the classified objects on top of
the original frame.

The allocation of an actor A to a computing unit U is
encoded by an atom of the form run_on(A,U). In ASP,
any solution of such an atom is given by binding its (free)
variables to specific values. Such values are inferred from
declared facts, and they have to be consistent with possible
constraints the atom specifies.

Given any actor A to be executed, the following ASP rule
chooses a computing unit U on which the actor should run:
1{run_on(A,U):cu(U),runnable_on(A,U)}1

:- actor(A).

The aggregate atom in the head (i.e., all the declarations
before the syntactic token ’:-’ ) specifies that, for each actor
A, the atom run_on(A,U), appearing on the left side of
the colon, must hold for a pair (A,U) that satisfies the
conjunction on the right side of the colon. The values before
and after curly brackets specify the lower and upper bound,
respectively, on the number of run_on(A,U) atoms that
must hold for the given A. Thus, the above rule requires
that each actor be assigned to exactly one computing unit.
The runnable_on(A,U) atom maps each actor A to all
computing units for which there exists a device-specific im-
plementation of A enabling its execution on U. In this sense,
the allocation:
run_on(crop1,cpu1), run_on(crop2,cpu1),

run_on(crop3,gpu1) ...

is a valid model for the atom, while the following is not:
run_on(crop1,cpu1), run_on(crop1,cpu2),

run_on(crop3,gpu1) ...

because it allows for the allocation of the same actor (i.e.
crop1) to different computing units (i.e., cpu1 and cpu2).
In addition, also the allocation:
... run_on(gpu2,crop3) ...

is not admissible, as it results from a binding that inverts the
roles of the arguments.

The encoding presented so far provides a practical way to
allocate computing units to actors. Indeed, from any answer set
computed by the ASP solver, we get a feasible allocation (that
is, an allocation satisfying the specification on the types of
devices on which each actor can run on) by simply extracting
from an answer set all the atoms of the form run_on(A,U).
However, we are not interested in just computing any alloca-
tion, but in finding an optimal allocation aimed at improving
the computational efficiency of the execution environment.

In order to achieve this goal, the APO makes use of
additional facts to represent metrics, describing the status of
the execution environment, which may affect its efficiency. A
set of ASP rules is then used to make explicit the relation
between an allocation of actors and these metrics. Finally,
some ASP optimization statements specify heuristic criteria
for computing an optimal allocation.

B. Modeling the Optimization Rules

The allocation strategy we present here focuses on en-
hancing the computational efficiency, specifically the system
throughput, but the strategy can be easily adapted to achieve
a different optimization goal, such as reducing energy con-
sumption, by simply extending the module with suitable ASP
rules.

In order to define a heuristic for optimizing the throughput,
we have considered three metrics: (M1) the overload of
computing units, (M2) the communication cost among actors,
and (M3) the interference among actors, called annoyance,
resulting from their interaction when running on different
computing units.

In the following, we present: (i) the ASP rules that make
explicit the relation between an allocation of actors to com-
puting units and the metrics M1–M3, and (ii) the related ASP
optimization statements looking for an allocation that aims to
maximize the system throughput.



The overload O of a computing unit U (i.e. M1) is rep-
resented by cu_overload(U,O) and it is derived through
the following ASP rule as the maximum between the excess of
workload W to be processed by U with respect to its capacity C
(that is, W-C) and zero (representing a computing unit loaded
below its capacity or idle):

cu_overload(U,O) :- cu(U),
O=#max{0;W-C:cu_workload(U,W),
cu_capacity(U,C)}.

where cu_workload(U,W) represents the total workload W
to be processed by U, and cu_capacity(U,C) represents
the capacity C of U, which estimates the amount of messages
that U process within a given time window3. Finally, aiming
to maximize the throughput, we need to distribute the work-
load evenly across computing units by using the following
optimization statement:

#minimize{ X-Y : max_overload(X),
min_overload(Y) }.

where max_overload(X) and min_overload(Y) rep-
resent the maximum overload X and minimum overload Y,
respectively, computed over the set of values O such that
cu_overload(U,O) holds. The above optimization state-
ment specifies that an answer set is optimal if X-Y is minimal.
The dependency relation between the atoms occurring in
the optimization statement and the atoms representing the
allocation of an actor to a computing unit introduced by the
ASP rules (max_overload(X) and min_overload(Y)
depend on cu_overload(U,O), which in turn depends
on run_on(A,U) through cu_workload(U,W)), make
it possible to evenly distribute actors across computing units
according to their workloads.

The communication cost S between two actors A1 and
A2 (i.e., M2) is represented by a_cc(A1,A2,S), and it is
described by the following rule:

a_cc(A1,A2,S) :-run_on(A1,U1),
run_on(A2,U2), U1!=U2,
msg_exch_rate(A1,A2,R),
msg_exch_cost(U1,U2,C),S=C*R.

where msg_exch_rate(A1,A2,R) represents the mes-
sage exchange rate R between actors A1 and A2, and
msg_exch_cost(U1,U2,C) represents the message ex-
change cost C between computing units U1 and U2, respec-
tively. Then, if two actors are assigned to different computing
units U1!=U2, the communication cost S between A1 and
A2 is obtained by multiplying C by R. Similarly to what we
have done to distribute the workload evenly, we also need to
allocate actors so that the communication cost is minimal:

#minimize{ S,A1,A2 : a_cc(A1,A2,S) }.

The above statement specifies that an answer set is optimal
if the sum of the communication costs S over the set of
contributed tuples S,A1,A2 is minimal, thereby requiring the

3For simplicity, we assume a periodic evaluation of the optimal allocation
of actors to computing units. More advanced decisions regarding when to
perform the optimization are beyond the scope of this work. Also, this problem
has already been tackled in the literature [15].

ASP solver to look for allocations that group together actors
with higher communication costs on the same computing unit.

The annoyance C between actors A1 and A2 (i.e., M3)
is represented by mutual_annoyance(A1,A2,C), which
describes how significantly the actor distribution across com-
puting units hampers performance. In other words, internally,
annoyance is a dimensionless parameter that guides optimiza-
tion; externally, it functions as a modeling control parameter
for specific hindrances, ultimately penalizing configurations
that unnecessarily separate tightly coupled actors. We further
detail these aspects in Section III-C. In the motivating ex-
ample, the annoyance represents the idle time on cropping
and classifying actors, caused by the actor responsible for the
object localization.

Intuitively, minimizing the annoyance reduces the bottle-
necks, which contributes to increasing the system throughput.
Therefore, we also ask the ASP solver to minimize the total
annoyance:
#minimize{ C,A1,A2 :

mutual_annoyance(A1,A2,C),
run_on(A1,U1), run_on(A2,U2),
U1 != U2 }.

The optimization statement can be prioritized, allowing the
designers of the resource management module to order the
criteria according to their relevance. By specifying priorities
of the optimization statements, APO associates a tuple of costs
to each answer set. To determine whether an answer set is opti-
mal, APO compares cost tuples whose elements are ordered by
priority. Criteria with the same priority contribute to the same
component of the tuple of costs. In particular, our strategy en-
forces APO to minimize the difference between the maximum
and minimum overload (i.e., it concerns M1), to minimize the
communication cost (i.e., M2), and to minimize the annoyance
(i.e., M3). Their relative priority is defined according to
the relevance evaluated from the facts defining these metrics
(that is, the facts defining the predicates msg_exch_rate,
msg_exch_cost, and mutual_annoyance).

C. Modelling the Annoyance

In the proposed approach, the concept of annoy-
ance is a unifying abstraction that converts runtime-
specific drags on progress (e.g., , excessive message ex-
changes [16][17], frequent rollbacks [18], or synchroniza-
tion delays [19]) into a single dimensionless integer fed to
mutual_annoyance(A1,A2,C). This abstraction stems
from the observation that, whatever task synchronization strat-
egy a runtime adopts, each source of drag manifests as a
countable class of micro-events observable in a sliding window
∆t. If speculative synchronization is employed, rollbacks are
produced; a conservative engine can rely on null messages
that occupy the network without advancing simulation time;
a fork/join execution pattern leaves processors stalled while
waiting on an outstanding dependency.

Typically, runtime environments collect statistics to observe
at runtime the occurrence of these classes of events, based
on their internal organization: a rollback handler counts every



restored state, the message layer tags null messages, and
the scheduler exposes idle cycles. These classical statistics
can be used to instantiate an annoyance value, which thus
becomes a runtime-dependent optimization parameter that is
used internally by APO to drive the optimization process, as
we stated before.

To clarify how a runtime environment developer can instan-
tiate this annoyance value, we provide a simple yet general
example on how to model annoyance in a generic runtime
environment. Denote by ρuv(∆t) the number of rollbacks that
actor u triggers in actor v, by ηuv(∆t) the number of null
messages exchanged between the pair, and by ιuv(∆t) the sum
of idle cycles spent by either actor because the other has not
progressed. These three counters all measure wasted potential
progress; they differ only in units. A dimensionless annoyance
arises after rescaling each counter by a device-independent
baseline latency λ (for instance, the mean CPU time required
to validate and enqueue a useful task) and applying positive
rational weights γρ, γη , γι that express the relative impact of
the corresponding phenomenon on long-run throughput. We
obtain:

Auv(∆t) = γρ
ρuv(∆t)

λ
+ γη

ηuv(∆t)

λ
+ γι

ιuv(∆t)

λ
.

Because the numerator and denominator of every term
share the same physical unit (seconds or cycles), the sum
is dimensionless. Choosing λ once per platform eliminates
otherwise cumbersome unit conversions when a heterogeneous
node mixes CPU, GPU, and FPGA devices: the cycle counter
of each device is already converted into seconds by the local
clock frequency. The weights become a policy knob: in a spec-
ulative environment prone to frequent causality violations, we
may set γρ > γη, γι so that the optimizer empties overloaded
links once rollbacks increase; in a conservative environment
running on a tightly coupled system, we can increase γη to
reduce the explosion of forward-in-time null messages. Where
underutilization hampers the processing throughput, we can
raise γι to penalize the idle phases.

Anyhow, these values should be correctly fed into APO. Any
ASP solver (e.g., Clingo) expects integer arguments; hence,
we can pick a scaling factor σ equal to the least common
multiple of the denominators of γρ, γη , and γι, and multiply
the real-valued annoyance by σ, then compute the nearest-
integer function:
mutual_annoyance(U,V,N) :-

rollbacks(U,V,R), nulls(U,V,M),
idle(U,V,I),
N = σ*(γρ*R/λ+ γη*M/λ+γι*I/λ).

All symbols on the right-hand side are integer atoms. Roll-
backs, null messages, and idle cycles are counters accumulated
over ∆t. When APO subsequently minimizes the sum of N
across conflicting actor pairs, it balances every class of runtime
hindrances.

If a different runtime (with different sources of hindrances)
is considered, it only needs to expose other counters and
associated weights: a synchronous barrier engine could add

a stalled-barrier counter; a transactional memory subsystem
could add an abort counter. Provided that every new term
is divided by the same λ factor and incorporated into the
weighted sum (if needed), APO logic and the existing ASP
encoding remain unchanged, while the designer maintains the
freedom to tune weights offline through micro-benchmarks
or sensitivity analysis. The annoyance metric thus becomes
a portable, dimensionless integer that captures heterogeneous
manifestations of inefficiency without privileging any particu-
lar synchronization strategy.

IV. EXPERIMENTAL ASSESSMENT

We studied the validity of APO relying on traces that
describe the behavior of task-based applications. These traces
record the logical time at which some actor schedules the
execution of a task at a different actor. This notion of logical
time captures the dependency among tasks. All tasks must
be executed in logical time order, but simultaneous tasks
are deemed independent and can be executed in any order,
thus capturing concurrency. The considered traces have been
generated randomly—both the traces and the generator are
available in the online repository.

We have relied on a custom simulation framework, also
available in the online repository, that abstractly represents
the co-execution of these simulation traces on a heterogeneous
architecture composed of CPUs (organized in different NUMA
nodes), GPUs, and FPGAs. This setup allows us to explore
the behavior of different optimization strategies on different
heterogeneous architectures. This approach, which has already
been exploited in the literature [15], enables us to plug
different optimization strategies and query them using the
runtime parameters observed in the simulated heterogeneous
architecture to observe how different decisions affect the
performance of the task-based application co-executed on the
heterogeneous environment.

As mentioned, the tasks in the trace carry dependency
information subsumed in their logical time. Considering that
heterogeneous architectures are composed of independent
hardware components, we have implemented in the simulation
framework a speculative execution paradigm, similar to [18],
in which tasks could be executed out of order, but the causality
violation is fixed a posteriori by means of a rollback operation.
As mentioned in Section III, this is one of the possible
sources of annoyance between actors. We emphasize that this
source of annoyance is related to the organization of the trace
simulation environment we have used for the experimental
assessment: the approach proposed in this paper is general,
and its correctness and applicability do not depend on the
rollback capability of the task runtime environment. Indeed,
the concept of annoyance is general, explicitly accounting for
multiple sources of task-processing impediment.

Using this simulation framework, we have compared the
APO optimization strategy described in Section III against
different approaches. The first is the ground truth, namely the
optimal actor placement determined by an oracle with perfect
foresight of the execution trace. This oracle, knowing the best



placement for each actor at every instant while also accounting
for future execution dynamics, serves as a theoretical upper
bound for optimization. Since our experimentation is trace-
based, we can compute the ground truth by exhaustively
exploring all possible actor placements during the execution.

Comparing against the ground truth is relevant because
short-lived fluctuations in workload might mislead optimiza-
tion strategies relying solely on past observations, which
could produce transient placements that, while momentarily
beneficial, ultimately incur unnecessary migration costs. The
oracle, by considering the full execution trace, avoids these
inefficiencies by identifying cases where migration would be
short-lived and, therefore, suboptimal in the long run.

The second comparison approach uses METIS, a framework
for graph partitioning. It creates partitions of an indirect
weighted graph to minimize the weights of edges that cross
different partitions (the edge-cut). A primary challenge in
graph-based partitioning for parallel computing is accurately
modeling the optimization problem [20], which often leads
METIS to provide only approximate solutions. However,
METIS can adapt to heterogeneous architectures by allowing
the specification of partition weights, referred to as metis-
std in the results, which improves its adaptability to different
computational resources.

To avoid biasing our evaluation in favor of APO, we have
constructed an enhanced configuration of METIS intended to
serve as a stronger baseline. This setup, referred to as metis-
apolike in the results, is not meant as a proposal to improve
METIS itself—there are several proposals in the literature in
this direction, which we discuss in Section VI. The setup
metis-apolike is intended as a benchmark that captures, as
faithfully as possible, the optimization objectives pursued by
APO. To this end, we translated the rules and facts introduced
in Section III into graph-based formulations compatible with
METIS. The metrics related to annoyance and overload (i.e.,
M1 and M3 in Section III-B) are modeled through graphs
whose vertices represent actors, with edge weights encoding
either mutual annoyance or message exchange rates, and vertex
weights corresponding to the expected task volume within a
fixed time window. In contrast, for communication cost (i.e.,
M2), we construct a graph where each vertex corresponds
to a pair consisting of an actor and a candidate computing
unit. Here, edges model the cost of communication between
actor-device pairs, with weights proportional to the product of
message exchange rate and inter-device communication cost.
Vertex weights in this case reflect the expected workload and
device processing capacity.

To mimic the multi-optimization approach used by APO,
we run METIS in sequence on the three graphs. Before each
run, we pre-process the current input graph. Specifically, we
leverage a set of scale factor functions that update the graph’s
weights in order to enforce connectivity among the vertices
that have been assigned to the same partition during the
previous optimization step.

The final approach used for comparison, referred to as
random, assigns actors to random devices each time the opti-

(a) Topology A (b) Topology B

Fig. 3: Actor topologies used in the preliminary study.

Topology random metis-std metis-apolike APO

A 0.82 1.00 1.00 1.00
B 0.60 0.94 0.94 0.95

TABLE I: Performance ratio over the ground truth.

mizer is invoked. This baseline serves as a control mechanism,
ensuring that the solutions produced by the other strategies are
meaningfully competitive, providing tangible improvements
beyond chance.

A. Validation on Synthetic Topologies

In this first assessment, we studied a couple of small-scale
degenerate configurations, which work as a stress test for our
optimization approach. These configurations have 8 actors and
4 computing units; all actors are uniform in terms of both the
number of tasks to be processed and the cost for an individual
task, independent of the computing unit they are running on.
Actors are organized in two topologies that have uncommon
message-exchange patterns for task-based applications and do
not actually require any dynamic optimization. The topologies
are depicted in Figure 3. Topology A is very simple, with no
actor exchanging tasks with other actors. Topology B is a ring
with actors exchanging tasks only with one neighbour. We
have simulated this application for 106 simulated time units,
with each actor initialized with 1 pending task.

Table I summarizes the results of this experiment, presenting
the performance of each strategy as a fraction relative to the
ground truth. The data clearly demonstrate that all examined
optimization strategies significantly outperform a random al-
location baseline. Furthermore, both variants of METIS as
well as APO successfully determine optimal allocations in the
trivial scenario represented by the disconnected topology A.
This outcome highlights the effectiveness and robustness of
the proposed optimization strategy, illustrating its ability to
consistently derive optimal or near-optimal solutions even in
scenarios where explicit optimization might seem unnecessary.
This observation is confirmed for the more challenging topol-
ogy B, where APO achieves the highest performance (although
with a minimal gap). Interestingly, the more sophisticated
metis-apolike configuration does not yield any measurable im-
provement compared to the conventional metis-std approach,
suggesting that increased complexity does not necessarily
translate into enhanced effectiveness in this context.
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Fig. 4: Throughput of the Surveillance Example.

B. Motivating Example Trace

In a second assessment, we studied the behavior of APO
when dealing with a scenario similar to the motivating example
presented in Section II-C, when using 8 actors. Among them,
one performs the final object localization (i.e., localize),
5 execute the classifications illustrated in Figure 2 (i.e.,
classify), and 2 perform cropping activities (i.e., crop). In
this experiment, we have used the same configuration as in
Section IV-A.

The results of this experiment are shown in Figure 4, where
the black horizontal line represents the ground truth. As can
be seen, after an initial transient period in which no differ-
ences are observed since none of the optimization approaches
has yet made any choices, we can see that the ASP-based
approach and its metis-apolike counterpart show very similar
performance results. This result confirms what we observed in
the previous validation example: an approach that considers
the nature of the tasks and the runtime interdependencies
between them is able to come very close to the theoretical
optimum. Moreover, we again emphasize that APO can deliver
a performance competitive compared to metis-apolike without
the complexity required to implement weighting functions in
METIS.

The poor performance of metis-std in the surveillance
example stems from its inherently static optimization model,
which fails to accommodate the dynamic and phase-shifting
nature of task-based workloads. Designed to minimize edge-
cut based on a fixed communication graph, metis-std locks
in actor-to-device placements that do not adapt as execution
patterns evolve—such as the alternation between uniform task
distribution and hotspot formation observed in the video pro-
cessing pipeline. This rigidity leads to excessive inter-device
communication, contention on critical paths, and increased
synchronization overhead during phases that were not well rep-
resented in the original graph abstraction. Moreover, metis-std
lacks awareness of heterogeneous constraints, such as actor-
specific affinities or resource asymmetries, and cannot reason
about time-sensitive dependencies like speculative rollbacks
or bottleneck-prone actors. In contrast, the random baseline,
despite its simplicity, occasionally benefits from favorable
actor co-location by chance, avoiding systematic placement
errors, and achieving better throughput under dynamic execu-
tion conditions.

TABLE II: Parameters used to configure the simulation.

CPU GPU FPGA
Task duration (ms) 0.1 0.002 0.01

Causality restoration (ms) 0.01 0.01 0.01

Task Exchange Cost Factors CPU GPU FPGA
CPU 1 5 10
GPU 5 1 20

FPGA 10 20 1

C. Stochastic Traces

In this last assessment, we simulated a stochastic trace on
top of a small-scale heterogeneous node composed of an octa-
core CPU, two GPUs, and an FPGA. To run our simulations,
we have configured the simulator using the parameters re-
ported in Table II, which are representative of off-the-shelf
heterogeneous architectures.

The task processing factor normalizes device throughput to
a CPU baseline of 1: a midrange GPU can sustain ∼ 50 tasks/s
on parallel kernels, whereas an optimized FPGA handles
∼ 10 tasks/s yet often outperforms GPUs on pipeline-oriented
algorithms [21], [22], [23]. We set the CPU task time to 100 µs
to reflect moderately complex workloads involving memory
accesses, arithmetic operations, and modest system overhead,
in line with microbenchmark reports of kernel launches, small
matrix multiplications, and memory-copy routines [24], [25].
Rollbacks for causality violations (via checkpointing or trans-
actional memory) revert a confined state in ∼ 10 µs through
in-cache manipulations or journaling buffers, consistent with
observed latencies in HPC and concurrency scenarios [26],
[27], [28]. Inter-device communication costs take the CPU-
to-CPU baseline (i.e. 1×) as reference: GPU offloads over
PCIe incur ≈ 5× overhead, CPU–FPGA exchanges ≈ 10×
(including FPGA reconfiguration), and GPU–FPGA transfers
can reach ≈ 20× due to host-mediated staging in the absence
of coherence [22], [23], [29], while same-device transfers cost
0.5× the baseline.

We emphasize that all these values are configuration pa-
rameters to APO. If different heterogeneous architectures are
considered, e.g., based on coherent CPU-GPU memory such
as NVIDIA Grace Hopper [30] or AMD Instinct MI300A [31],
our approach can find optimal task placement by simply
adjusting the configuration parameters.

The considered trace comprises 64 actors interacting
through two recurring patterns over time. During the first
phase, actors exchange tasks with uniformly random destina-
tions. In the second phase, tasks exhibit a hotspot distribution,
with only 10% of the actors serving as destinations for newly
generated tasks. These two phases alternate repeatedly, with
each phase lasting 5,000 simulated time units, constituting
a total trace duration of 60,000 simulated time units. The
trace has been replayed multiple times, querying the different
optimization strategies to determine which one is capable of
sustaining the best throughput (measured in terms of commit-
ted tasks/millisecond) in spite of the workload variations.
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Fig. 5: Throughput of the Stochastic Trace.

For this experiment, we do not report the value of the
ground truth because extensively exploring all the possible
configurations is unfeasible.

We show the results in Figure 5. Unlike the previous
experiment, metis-std is unable to surpass the performance
of a random assignment. This result clearly indicates that
traditional single-objective partitioning methods fall short of
effectively handling the intricate interaction patterns proper
of task-based applications. Conversely, both APO and the en-
hanced metis-apolike variant demonstrate robust performance,
achieving considerably higher throughput. In some phases of
the execution, APO can outperform metis-apolike by 45%.
This result highlights that optimization approaches explicitly
accounting for complex interaction dynamics are necessary
to effectively manage task-based workloads characterized by
sophisticated patterns of communication and dependency.

An interesting observation is that the throughput provided
by metis-apolike exhibits less variability over time compared
to APO. This difference likely arises from APO ’s exclusive
reliance on integer arithmetic, causing greater sensitivity to
minor fluctuations in task assignment. Nevertheless, ASP gen-
erally achieves higher throughput compared to metis-apolike.
Additionally, as previously discussed, the declarative nature of
APO simplifies prototyping by providing clearer syntax com-
pared to the manually defined weighting functions necessary
in metis-apolike. This property may facilitate adapting APO
to a broader set of optimization scenarios, including those
involving additional non-functional metrics such as energy
consumption, a direction planned for future research.

V. THREATS TO VALIDITY

In the following, we briefly report the threats that may have
affected the validity of the results presented in this work.

The first set of threats concerns the constructs we discussed.
We found that translating the concepts from the APO module
into METIS is not straightforward. METIS uses a graph-based
representation for optimization scenarios and applies graph
partitioning algorithms. For example, in APO, we explicitly
model the overload of a computing unit and optimize by
minimizing the difference between maximum and minimum
overloads across allocations. In METIS, representing this is
complex; we use the rate of task forecast as weights for the
graph’s vertices. METIS computes the edge-cut to estimate

communication costs while load-balancing the sum of the
vertices’ weights; therefore, it fails to capture the fine-grained
characteristics modeled by APO. Similar difficulties arise with
multi-objective optimization. APO enables chaining different
goals, limiting the search space to sub-optimal solutions of
prior goals. In contrast, METIS requires separate graph rep-
resentations for each optimization problem, necessitating the
transformation of the graph based on earlier outcomes. These
examples illustrate that while APO and METIS optimization
functions are similar, they are not identical, which may affect
results. Additionally, modelling multi-objective problems in
METIS is inherently challenging, even when a clear graph-
based representation exists.

Another class of threats involves the internal aspects of the
experiments that could have influenced the observed outcomes.
The simulation framework outlined in Section IV manages a
defined set of configurable parameters; however, these may
not fully capture the complexity of all real-world scenarios.
We have tested the simulator’s implementation in isolation for
correctness. The first study in Section IV-A covers a selection
of interesting topologies, but this is not exhaustive. Each topol-
ogy has the same number of nodes (i.e., actors), corresponding
to a multiple of the maximum number of available computing
units. In conclusion, while we have validated the simulator
carefully, we cannot guarantee it is completely free from bugs
or biases that may have impacted the results.

Our final consideration relates to the generalizability of
the observed outcomes. We acknowledge that the traces we
generated randomly in the experiments reported in Section IV
are synthetic and do not reflect all the possible characteristics
of real-world applications. Although we are confident that
similar results could be achieved in other contexts, we cannot
yet provide solid arguments to support the general validity of
our findings.

VI. RELATED WORK

Several proposals in the literature focus on dynamically
orchestrating task-based applications across heterogeneous
platforms. Notably, the works in [32], [33] utilize domain-
specific knowledge for task assignment optimization. In [33],
the authors introduce an offline toolchain for preconfiguring
applications alongside a runtime orchestrator that manages
computation and data movement, specifically for multiphysics
and multicomponent scientific applications. In contrast, our
work targets generic task-based applications using the actor
model, without explicitly optimizing data transfer between
heterogeneous devices, highlighting the distinct nature of our
contributions.

Conversely, Delite [32] is a framework aimed at simpli-
fying the creation of performance-oriented DSLs for hetero-
geneous computing environments. Delite provides reusable
components, such as parallel patterns, optimizations, and code
generators, enabling DSLs to efficiently target CPUs, GPUs,
and other accelerators In our work, we do not consider the
generation of code for the different heterogeneous devices
but focus only on dynamic allocation. Our proposal could



be therefore exploited in conjunction with code generation
capabilities of Delite.

The work in [34] proposes a framework based on ma-
chine learning techniques to enhance programmability, flexi-
bility, and efficiency in heterogeneous architectures comprising
CPUs, GPUs, and hardware accelerators. At runtime, a dis-
tributed reinforcement learning-based scheduler dynamically
maps tasks onto processing elements, adapting execution poli-
cies based on Q-learning to optimize performance. We do
not exploit machine learning techniques that could require
extensive exploration phases at runtime to effectively optimize
performance. Rather, similarly to [35], we monitor runtime
dynamics and use this information within a reasoning system.
In this work, such a reasoning system finds an optimal actor
placement considering also explicit constraints.

Several works focus on optimizing task execution in het-
erogeneous architectures by dynamically distributing work-
loads. In [36], the authors introduce a runtime system that
schedules compute kernels across CPUs, GPUs, and FPGAs
using performance profiling and adaptive migration to en-
sure near-optimal load balancing without manual intervention.
Similarly, [37] presents a data-parallel execution model that
automatically distributes workloads across diverse resources
through runtime profiling and asynchronous scheduling. In
contrast, our proposal emphasizes logical reasoning over sys-
tem constraints, specifically targeting task-based applications
with complex dependencies, which are essential for achieving
high performance in heterogeneous architectures.

Our proposal also shares some goals with proposals re-
lated to load balancing in various task-based scenarios (see,
e.g., [38], [39], [40]). Indeed, these proposals address the
execution optimization and resource management of complex
applications, accounting for workload variability and hetero-
geneity. Our approach is more versatile, as ASP-based opti-
mization can be leveraged to determine an optimal placement
reasoning on constraints that do not necessarily relate to
performance metrics only.

Our proposal directly relates to other works that exploit ASP
to carry out optimizations. In [41], the authors propose an
approach to system synthesis based on ASP modulo theories
(ASPmT) that improves symbolic synthesis for heterogeneous
embedded systems. By integrating Quantifier-Free Integer
Difference Logic directly into ASP solving, their method
enables early pruning of infeasible solutions through partial
assignment evaluation, improving scalability. The work in [42]
introduces a design-space exploration framework for hetero-
geneous multiprocessor systems-on-chip, combining profiling,
simulation, and constraint-solving techniques to optimize hard-
ware architectures. This proposal extracts task precedence,
communication costs, and computational patterns from appli-
cations, using Integer Linear Programming (ILP) and ASP to
generate optimal processor mappings and hardware accelerator
configurations. To the best of our knowledge, we are exploiting
ASP for the first time to provide dynamic optimization of
the allocation of task-based applications on heterogeneous
architectures.

A notable effort toward extending graph partitioning to
multi-objective settings is presented in [43], In this work, the
authors introduce a formulation and algorithm that enhance
METIS with support for preference-driven tradeoffs among
multiple edge-cut objectives. Their method yields partitionings
that are tunable, predictable, and capable of balancing both
similar and dissimilar metrics across objectives. It is important
to emphasize that our work does not aim to solve the graph
partitioning problem per se, nor to compete with or improve
upon the state-of-the-art in that domain. Our use of METIS—
specifically the construction of the metis-apolike baseline—
is not proposed as a contribution, but solely as a stronger
benchmark to avoid trivial comparisons against simplistic
partitioning strategies. At the same time, unlike the multi-
objective formulation in [43], which assumes a standard homo-
geneous graph representation with scalar or vector weights on
edges and possibly vertices, our allocation constraints are in-
herently heterogeneous and not expressible within that model.
In particular, some constraints in our system involve relation-
ships between actors (which correspond to graph vertices) and
computing units (which, in graph terms, would correspond to
partitions themselves). These mixed-dimensional constraints
cannot be naturally encoded in METIS’s graph abstraction,
which assumes that all optimization criteria can be localized
on the graph structure itself. Consequently, our advanced
METIS baseline must be understood as an approximation—
constructed solely to enable a non-trivial empirical compar-
ison with our ASP-based optimization, which, by design,
can natively represent and reason about such heterogeneous
constraints.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a dynamic optimization technique
to determine the optimal placement of task-based applica-
tions on heterogeneous architectures. The proposed ASP-based
multi-objective strategy for actor-to-device allocation is able
to produce allocations that capture the workload dynamics of
such applications, also when the workload varies during the
execution. Indeed, APO is able to outperform, up to 45%,
allocations determined using other state-of-the-art tools and
methods, such as those based on graph partitioning.

In the future, we plan to rely on the fast prototyping capa-
bilities of ASP to optimize the allocations and also to improve
other non-functional metrics, such as energy efficiency, or to
maximize the performance of the application under a power
cap. We also plan to apply our method to applications whose
actors cannot run uniformly on every available device.
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