
Learning to Contest Argumentative Claims

Emanuele De Angelis1[0000−0002−7319−8439],
Maurizio Proietti1[0000−0003−3835−4931], and

Francesca Toni2[0000−0001−8194−1459]

1 IASI-CNR, Rome, Italy
emauele.deangelis;maurizio.proietti@iasi.cnr.it

2 Imperial College London, UK
ft@ic.ac.uk

Abstract. Contestability is a highly desirable property for human-centric
AI, ensuring that the outcomes of an AI system can be challenged,
and possibly changed, when interacting with humans and/or other AI
systems. In this paper we study contestability of argumentative claims
obtained from Assumption-Based Argumentation (ABA) frameworks, a
unifying formalism for various non-monotonic reasoning methods that
can be used for explainable AI systems. Specifically, we focus on ABA
frameworks that are learnt with ABA Learning, a recent approach to
symbolic learning from positive and negative examples, given a back-
ground knowledge. We formally define a notion of contestation when
desirable claims are rejected or undesirable claims are accepted in learnt
ABA frameworks. We also show that ABA Learning can be adapted to
redress issues raised by contestation so that the desirable claims are ac-
cepted and the undesirable claims are rejected. This is naturally achieved
by extending the learnt ABA framework without restarting from scratch,
and instead preserving as much as possible thereof by considering some
of its rules defeasible. We conduct several experiments with a variety
of tabular datasets to demonstrate the computational advantages of our
contestable ABA Learning in comparison with re-learning from scratch.

Keywords: Symbolic learning · Argumentation · Contestability.

1 Introduction

As the use of AI in society grows, the need for accountability, safety, security and
alignment with human values of AI models also increases. Towards these ends,
contestability is perceived by several as a highly desirable property for AI [20],
and a crucial functionality for human-centric AI. In a nutshell, contestability
amounts to ensuring that the outcomes of AI systems can be challenged, and
possibly changed, if these outcomes are deemed inadequate or inappropriate by
humans and/or other AI systems. For illustration, an AI system aiding a bank
manager to decide on loan applications, may suggest that a specific applicant
should not be granted their request if they have had career breaks in recent years;
the manager or the applicant may want to contest the AI system on unfairness
grounds, if the applicant’s career breaks were due to parental leave.

2 E. De Angelis, M. Proietti, and F. Toni

In this paper, we study the contestability of argumentative claims obtained
from Assumption-Based Argumentation (ABA) frameworks [1,10,29]. ABA frame-
works are systems of rules that generalise many non-monotonic, rule-based for-
malisms, including (non-stratified) logic programs with negation as failure [1,4,23].
The rules in ABA frameworks may admit assumptions amongst their premises.
These render the rules defeasible, by means of derivations for the contraries
of the assumptions. In this setting, an argument is simply a derivation (i.e., a
deduction) of a claim (i.e., a sentence) constructed via rules.

Continuing the earlier loan illustration, an ABA framework may include, for
applicant jo, rules loan(jo) ← employed(jo), nobreaks(jo) and breaks(jo) ←
onleave(jo), where nobreaks(jo) is an assumption with contrary breaks(jo), as
well as rules (with true premises, i.e., facts) employed(jo)← and onleave(jo)←.
To determine whether claims are accepted, arguments need to be constructed
and defended against attacks, according to some ABA semantics [1,10]. In the
illustration, the claim loan(jo) is not accepted (i.e., it is rejected), no matter
which ABA semantics is adopted: an argument for loan(jo) can be constructed
from the rules, but it needs to rely upon the assumption nobreaks(jo), and this
is attacked by an argument with claim breaks(jo) which cannot be attacked.

Specifically, in this paper we focus on ABA frameworks that are learnt with
ABA Learning [6,7,22,28], a recent approach to symbolic learning from positive
and negative examples (e.g., about applicants who received or not a loan in
the past), given a background knowledge (e.g., knowledge about applicants).
We formally define a notion of contestation when given desirable claims are
rejected or given undesirable claims are accepted in learnt ABA frameworks.
We also define a notion of redress of issues raised by contestation so that given
desirable claims are accepted and undesirable claims are rejected. The notions
of contestation and redress take into account the positive and negative examples
that led to the learnt ABA framework and that still need to be accepted and
rejected, respectively. Redress can be naturally achieved by extending the learnt
ABA framework without restarting from scratch, and instead preserving as much
as possible thereof while considering some of its rules defeasible.

Overall, we make the following contributions: (1) we define novel notions of
contestation and redress in the context of ABA Learning (Section 3); (2) we
define algorithmic counterparts of these notions, based on a modification of the
forms of ABA Learning studied in [6,7] (Section 4); (3) we implement our algo-
rithms as part of the ABALearn tool; and (4) we conduct several experiments
with a variety of tabular datasets to demonstrate the computational advantages
of our contestable ABA Learning in comparison with re-learning from scratch.

Related work. The need for contestable AI is advocated by several (e.g., see the
recent survey in [20]) but only a handful of algorithmic solutions exist. Amongst
these, [25] propose a novel approach to fine tune neural models when they are
contested on the basis of having learnt causal dependencies deemed inappropri-
ate by subject matter experts. Furthermore, [11] develop an argumentation-based
model for contestable AI, but focusing on verification of claims in natural lan-
guage with large language models and based on argumentation frameworks and

Learning to Contest Argumentative Claims 3

semantics of a different kind than for ABA. Both [11] and our work in this paper
align with the vision of [20], also adopted by [8], that argumentation should play
a crucial role in achieving contestable AI.

In [20], three forms of contestability are identified, for a given AI model M :
(1) outputs by M for individual inputs are deemed undesirable, e.g., y = M(x)
for input x is deemed the wrong classification; (2) how M determines outputs for
specific inputs is deemed undesirable, e.g., the way M uses a particular rule is
deemed inappropriate; and (3) the full model M is contested without reference
to any specific input, e.g., a rule in M could be the object of contestation. In
this paper we focus on case (1) only, leaving the other two to future work.

Several other approaches to symbolic learning exist, besides ABA Learning
that we rely upon. Some of these other approaches are also based on argu-
mentation [3,9,14], while others [16,27,30] are based on learning exceptions to
defeasible rules (via negation-as-failure) similarly to the case of ABA learning
(which however uses assumptions). Other approaches to symbolic learning are
based on abductive reasoning [15], which is closely related to the use of assump-
tions similarly to ABA, or answer set programming (ASP) [18,19,26], which is
related to ABA as some forms of ASP can be mapped to ABA frameworks, and
ASP can be used to determine acceptability of claims in ABA as we do in ABA
Learning [6]. None of these approaches accommodates (forms of) contestability.

Amongst symbolic learning systems, IncrementalLAS [17] can be seen as ac-
commodating a form of contestability (also of the first kind) by seeing learning
as an incremental process. A formal and empirical comparison between our ap-
proach and IncrementalLAS requires a formal mapping between their learning
and contestability problems and is thus left to future work.

2 Background

2.1 Assumption-based argumentation (ABA)

An ABA framework (as originally proposed in [1], but presented here following
[10,29] and [4]) is a tuple ⟨L, R, A, ⟩ such that:
– ⟨L,R⟩ is a deductive system, where L is a language and R is a set of (infer-

ence) rules of the form s0 ← s1, . . . , sm (m ≥ 0, si ∈ L, for 1 ≤ i ≤ m);
– A ⊆ L is a (non-empty) set of assumptions;3
– is a total mapping from A to L, where a is the contrary of a, for a ∈ A

(also denoted as {a 7→ a | a ∈ A}).
Given a rule s0 ← s1, . . . , sm, s0 is the head and s1, . . . , sm is the body; if m=0
then the rule is called a fact (represented as s0 ←). In this paper, we focus
on flat ABA frameworks, where assumptions are not heads of rules4. Elements
of L can be any sentences, but in this paper we focus on ABA frameworks
3 The non-emptiness requirement can always be satisfied by including in A a bogus

assumption, with its own contrary, neither occurring elsewhere [29].
4 Flat ABA frameworks of the form considered here can be mapped onto logic pro-

grams, where assumptions are replaced by the negation as failure of their contraries.

4 E. De Angelis, M. Proietti, and F. Toni

where L is a finite set of ground atoms. However, we will use schemata for
rules, assumptions and contraries, using variables, similarly to logic programs, to
represent compactly all instances over some underlying universe U . In particular,
we will write a fact p(a)←, with a a tuple of constants, as p(X)←X=a, with
X a tuple of variables.

Example 1. The following ABA framework ⟨L, R, A, ⟩ represents the strategy
used by a bank for granting loans: a loan is approved if the applicant has been
employed for a certain period without breaks. Let the universe U be the set
{jo, bob, claudia, diana} of constants.
L = {loan(X), employed(X),nobreaks(X), breaks(X), onleave(X) | X ∈ U}
R = R1 ∪R2 where5

R1 = {ρ1. employed(X)← X= jo, ρ2. employed(X)← X=bob,
ρ3. employed(X)← X=claudia,
ρ4. onleave(X)← X= jo, ρ5. onleave(X)← X=bob,
ρ6. maternity(X)← X= jo, ρ7. maternity(X)← X=diana}

R2 = {ρ8. loan(X)← employed(X),nobreaks(X),
ρ9. breaks(X)← onleave(X) | X ∈ U}

A = {nobreaks(X) | X ∈ U}
nobreaks(X) = breaks(X), for all X ∈ U .

where the assumption nobreaks(X) renders rule ρ8 defeasible: the rule can be
applied only if breaks(X) cannot be derived.

In the remainder, by vars(E) we denote the set of variables occurring in atom,
rule, or rule body E (e.g. vars(onleave(X) ← X = jo) = {X}). We will assume
that variables range over the universe U of the individual constants occurring in
L, without, however, mentioning U explicitly. We will also often leave L implicit,
and use ⟨R,A, ⟩ to stand for ⟨L, R, A, ⟩.

In this paper, the semantics of (flat) ABA frameworks (to determine ac-
cepted/rejected claims) is given by stable extensions, defined below for arguments
and attacks as follows [4,10,29]:
– An argument for (the claim) s ∈ L supported by A ⊆ A and R ⊆ R (denoted

A ⊢R s, or simply A ⊢ s, when R is immaterial) is a finite tree with nodes
labelled by sentences in L or by true, the root labelled by s, leaves either
true or from A, and non-leaves s′ with, as children, the elements of the body
of some rule in R with head s′ (and all rules in R are used in the tree).

– Argument A1 ⊢R1 s1 attacks argument A2 ⊢R2 s2 iff s1 = a for some a ∈ A2.
Let Args be the set of all arguments and Att = {(β, γ) ∈ Args × Args | β
attacks γ}, for ‘arguments’ and ‘attacks’ defined as above. Then, ∆ ⊆ Args is a
stable extension iff (i) ∄β, γ∈∆ such that (β, γ)∈Att (i.e. ∆ is conflict-free) and
(ii) ∀γ ∈Args \∆,∃β ∈∆ such that (β, γ)∈Att (i.e. ∆ “attacks” all arguments
it does not contain, thus pre-emptively “defending” itself against attacks).

We say that an ABA framework is satisfiable if it admits at least one stable
extension, and unsatisfiable otherwise. We will write ⟨R,A, ⟩ |=∆ s to denote

5 We use identifiers (ρ1, . . . , ρ9 in the example) for rules, for ease of reference.

Learning to Contest Argumentative Claims 5

that ∆ is a stable extension of ⟨R,A, ⟩ and s ∈ L is the claim of an argument
in ∆; we also say that s is a credulous consequence of ⟨R,A, ⟩.

Example 2. Given the ABA framework presented in Example 1, we can con-
struct, amongst others, the following arguments:

β1: {nobreaks(jo)} ⊢ loan(jo)
β2: {nobreaks(bob)} ⊢ loan(bob)
β3: {nobreaks(claudia)} ⊢ loan(claudia)
β4: ∅ ⊢ breaks(jo)
β5: ∅ ⊢ breaks(bob)
Arguments β1, β2 are attacked by arguments β4, β5, respectively. β3 is not

attacked by any argument. The unique stable extension of the ABA framework
of Example 1 contains β3, β4, β5, but not β1, β2 (and thus the claims loan(jo)
and loan(bob) are rejected while claim loan(claudia) is accepted).

2.2 ABA Learning via Transformation Rules

We define the problem of learning an ABA framework from a background knowl-
edge (i.e., any satisfiable ABA framework), and positive and negative examples,
following [6,7,22]. By pred(E) we denote the set of predicate symbols occurring
in E, where E is an atom, a rule, a set thereof, or an ABA framework.

Definition 1. Given a satisfiable background knowledge F = ⟨R,A, ⟩, posi-
tive examples E+ and negative examples E−, with E+∪E− ⊆ L and E+∩E− = ∅,
and a set T of learnable predicates, with T ∩ pred(A) = ∅6 and pred(E+ ∪
E−) ⊆ T , the goal of (credulous, a.k.a. brave) ABA Learning is to construct
F ′ = ⟨R′,A′, ′⟩ such that: (i) R ⊆ R′, (ii) for each H ← B ∈ R′ \ R,
pred(H) ∩ pred(F) ⊆ T , (iii) A ⊆ A′, (iv) α′ = α for all α ∈ A, (v) F ′ is
satisfiable and admits a stable extension ∆, such that:
1. for all e ∈ E+, F ′ |=∆ e, i.e., all positive examples are covered in ∆
2. for all e ∈ E−, F ′ ̸|=∆ e, i.e., no negative example is covered in ∆.
F ′ is called a solution based on ∆ of the ABA Learning problem (F, ⟨E+, E−⟩, T)
(we also say that F ′ credulously entails ⟨E+, E−⟩). A solution F ′ is intensional
when R′ \ R is made out of rule schemata without any occurrence of individual
constants in the universe U .

Intensionality is a notion that captures the generality of a rule, as it enforces
that the rule makes no explicit reference to the underlying universe.

To solve ABA learning problems, we follow an approach based on the follow-
ing transformation rules [22].
R1. Rote Learning. Given atom p(t) ∈ L, with p ∈ T , add ρ : p(X) ← X= t to
R. Thus, R′=R∪ {ρ}.

We can use R1 either to add facts from positive examples or facts for con-
traries of assumptions.
6 Recall that we consider flat ABA frameworks, and thus an assumption cannot appear

in the head of a learnt rule.

6 E. De Angelis, M. Proietti, and F. Toni

R2. Folding. Given distinct rules ρ1: H ← B1, B2 and ρ2: K ← Eqs,B1, where
Eqs are equalities with vars(Eqs) ∩ vars(H ← B2) = ∅, replace ρ1 by ρ3: H←
Eqs,K,B2. Thus, R′ = (R \ {ρ1}) ∪ {ρ3}.

We can use R2 to generalise the body of a rule.
R3. Assumption Introduction. Replace ρ1 : H ← B in R by ρ2 : H ← B,α(X),
where X is a tuple of variables in ρ1 and α(X) is a (possibly new) assumption
with contrary c_α(X). Thus, R′ = (R\{ρ1})∪{ρ2}, A′ = A∪{α(X)}, α(X)

′
=

c_α(X), and β
′
= β for all β ∈ A.

R3 can be used to render a rule defeasible and introduces a contrary that
defines the exceptions to that rule.
R4. Fact Subsumption. Let ρ : p(X) ← X = t be a rule in R such that ⟨R \
{ρ},A, ⟩ credulously entails ⟨E+, E−⟩. Then, R′ = R \ {ρ}.

Example 3. Let us consider, as background knowledge, F = ⟨R1,A, ⟩ as per
Example 1.
E+ = {loan(claudia)} E− = {loan(bob)}

We consider loan as the unique learnable predicate, i.e., T = {loan}. It can be
shown that F ′ = ⟨R1 ∪R2,A, ⟩ is an intensional solution of the ABA learning
problem ⟨F, ⟨E+, E−⟩, T ⟩. It can be seen that these two rules be derived by using
the transformation rules R1–R4. In particular, rule ρ8 can be obtained by rote
learning loan(X) ← X = claudia from the positive example loan(claudia) (i.e.,
applying transformation rule R1), then folding this rule with ρ3 (i.e., applying
transformation rule R2), and finally using the assumption nobreaks(X) via R3.

To support contestability, we will rely upon various algorithms and imple-
mentations of the transformation-based approach to ABA learning [6,7,28].

3 Contestation and Redress

Suppose that we have learnt an ABA framework F ′ from a background knowl-
edge F, positive and negative examples ⟨E+, E−⟩, and learnable predicates T .
Given a claim c, not appearing amongst the examples in ⟨E+, E−⟩, we will define
the contestation of F ′ according to the request that c is covered or not in a stable
extension, say ∆, of F ′. We also require that ∆ continues to be a solution to the
given ABA learning problem, and thus all positive examples E+ are covered in
∆ and no negative examples in E− are covered in ∆. The existential quantifica-
tion on stable extensions is consistent with the credulous reasoning approach we
follow in this paper.

Definition 2 (Contestation). Let F ′ be a solution of an ABA learning prob-
lem (F, ⟨E+, E−⟩, T). Let c ̸∈ E+ ∪ E− be a claim in L whose predicate belongs
to T . Then
1. F ′ is contested by want of c iff there is no stable extension ∆ of F ′ such

that (i) E+ ∪ {c} are covered in ∆, and (ii) E− are not covered in ∆;
2. F ′ is contested by want of not c iff there is no stable extension ∆ of F ′ such

that (i) E+ are covered in ∆, and (ii) E− ∪ {c} are not covered in ∆.

Learning to Contest Argumentative Claims 7

In the definition of contestation, the background knowledge F is not used at
Points 1 and 2. However, F is relevant for the related definition of incremental
redress (Definition 3) to partition the set of rules between those that can be
modified (i.e., the learnt rules) and those that cannot (i.e., the rules in F).

Example 4. Let E+ = {p(1)}, E− = {p(2)} and c = p(3). Let F ′ admit two
stable extensions, ∆1, ∆2 such that

F ′ |=∆1 p(1), F ′ ̸|=∆1 p(2), p(3), and F ′ |=∆2 p(1), p(3), F ′ ̸|=∆2 p(2).
F ′ is a solution based on any of the two extensions, but the want of (not) c may
restrict the choice between ∆1 and ∆2. Indeed, F ′ is not contested by want of c,
because of the existence of ∆2, and F ′ is not contested by want of not c, because
of the existence of ∆1. If instead

F ′ |=∆1 p(1), p(3), F ′ ̸|=∆1 p(2), and F ′ |=∆2 p(1), p(2), F ′ ̸|=∆2 p(3),
then F ′ is a solution based on ∆1 only, and thus F ′ is contested by want of not c,
while not being contested by want of c (due to ∆1). Finally, if

F ′ |=∆1
p(1), F ′ ̸|=∆1

p(2), p(3), and F ′ |=∆2
p(3), F ′ ̸|=∆2

p(1), p(2),
then, again, F ′ is a solution based on ∆1 only, and thus F ′ is contested by want
of c, while not being contested by want of not c (due to ∆1).

Note that our choice of semantics of stable extensions enforces that, for every
c, F ′ is either not contested, or contested by want of c, or by want of not c, but
cannot be contested by want of both.

Proposition 1. Let F ′ be a solution of an ABA learning problem (F, ⟨E+, E−⟩, T),
and c ∈ L. F ′ cannot be contested by both want of c and want of not c.

Proof. Let F ′ be a solution of (F, ⟨E+, E−⟩, T) based on stable extension ∆.
Either c is covered in ∆ or not. If c is covered in ∆, then all claims in E+∪ {c}
are covered in ∆ and no claim in E− is covered in ∆ and F ′ is not contested by
want of c. If c is not covered in ∆, then all claims in E+ are covered in ∆ and no
claim in E−∪ {c} is covered in ∆ and F ′ is not contested by want of not c. □

When a solution F ′ of an ABA Learning problem (F, ⟨E+, E−⟩, T) is con-
tested, the ABA framework should be redressed to resolve the contestation. If
F ′ is contested by want of c, with predicate in T , then the goal of redress consists
in deriving a new ABA framework F ′′ such that c is covered in at least one stable
extension of F ′′. Analogously, if F ′ is contested by want of not c, with predicate
in T , then the goal of redress consists in deriving a new ABA framework F ′′

such that c is not covered in a stable extension of F ′′. In both cases all examples
of E+ and E− should be still be covered and not covered, respectively.

There is a trivial form of redress: we can start from the original ABA Learning
problem and add c to the positive examples, in the case of want of c, or to the
negative examples, in the case of want of not c. Thus, redressing reduces to
forgetting F ′ and solving one of the two ABA Learning problems: (F, ⟨E+ ∪
{c}, E−⟩, T) or (F, ⟨E+, E− ∪ {c}⟩, T). We call this form redress from scratch.

Clearly, it is undesirable to redress a learnt ABA framework from scratch, if
contestation is expected to happen often. In this scenario it is highly desirable to

8 E. De Angelis, M. Proietti, and F. Toni

enforce an incremental redress, that is, a redress that starts from F ′ and modifies
it as little as possible.

Example 5. Let us consider the ABA framework F ′ that is a solution of the
ABA Learning problem ⟨F, ⟨E+, E−⟩, T ⟩ from Example 3. Suppose now that F ′

is contested by want of loan(jo), which is not covered by any stable extension
of F ′. Intuitively, one would like that the claim loan(jo) is accepted. We can
incrementally modify F ′ by applying the transformation rules presented in Sec-
tion 2.2 as follows. By R3 we introduce a new assumption α(X), with contrary
c_α(X), and transform rule ρ9 into:

ρ10. breaks(X)← onleave(X), α(X)
Then, by R1, we get the rule:

ρ11. c_α(X)← X = jo
as c_α(jo) is a positive example that we want to learn. Finally, by folding ρ10
with ρ6, we get

ρ12. c_α(X)← maternity(X)
Intuitively, the learnt rules enforce that a loan is granted to an applicant who
is employed unless she/he has had a career break, excluding maternity leaves.
Now loan(jo) is covered in the unique stable model of the ABA framework F ′′ =
⟨R′′,A′′, ′′⟩, where: R′′ = R1∪{ρ8, ρ10, ρ12} = {ρ1, . . . , ρ7, ρ8, ρ10, ρ12} , A′′ =

{nobreaks(X), α(X)}, nobreaks(X)
′′
= breaks(X), α(X)

′′
= c_α(X).

This example suggests that an incremental redress of a solution F ′ of an
ABA Learning problem (F, ⟨E+, E−⟩, T) can be realised by: (1) selecting (some
of) the rules in F ′ that have been learnt from F and making them defeasible by
assumption introduction, thus deriving (F ′

ai, ⟨E+, E−⟩, T ′), where T ′ is obtained
by adding the contraries of the new assumptions, and then (2) solving one of
the ABA Learning problems (2.1) (F ′

ai, ⟨E+ ∪ {c}, E−⟩, T ′), if F ′ is contested by
want of c, or (2.2) (F ′

ai, ⟨E+, E− ∪ {c}⟩, T ′), if F ′ is contested by want of not c.
We define incremental redress in the presence of multiple contestations.

Definition 3 (Incremental Redress). Let F ′ = ⟨R′,A′, ′⟩ be a solution of
an ABA Learning problem ⟨F, ⟨E+, E−⟩, T ⟩, where F = ⟨R,A, ⟩. Let ⟨E+C , E−C ⟩
be two sets of claims such that: (i) the predicates of E+C ∪ E

−
C belong to T , and

(ii) (E+ ∪ E+C) ∩ (E− ∪ E−C) = ∅. Given a rule (H ← B) ∈ R′ \ R, we define:

(H ← B)ai =


H ← B if an assumption α(X) ∈ A occurs in B
H ← B,α(X) otherwise,

where α(X) is an assumption not in A′

and X = vars(H ← B),

Let F ′
ai be ⟨R′

ai,A′
ai, (.)

′
ai⟩, where R′

ai = R ∪ {ρai | ρ ∈ R′ \ R}, A′
ai =

A′∪{α(X) | α(X) is an assumption occurring in ρai for some ρ ∈ R′ \R}, and
α(X)

′
ai = α(X)

′
, for α(X) ∈ A′. An incremental redress of F ′ with respect to

⟨E+C , E−C ⟩ is any (intensional) solution of the ABA Learning problem (F ′
ai, ⟨(E+∪

E+C), (E− ∪ E−C)⟩, T ′
ai), where T ′

ai = T ′ ∪ {α(X) | α(X) ∈ A′
ai}.

Learning to Contest Argumentative Claims 9

Example 6. Let us consider the following example, which is a variant of an ex-
ample in [9]. F is a background knowledge with the following set R of rules:

ρ1. bird(X)← X=r, ρ2. bird(X)←penguin(X), ρ3. robin(X)←X=r,
ρ4. gull(X)←X=g, ρ5. penguin(X)←X=p1,
ρ6. penguin(X)←superpenguin(X), ρ7. superpenguin(X)←X=p2,
ρ8. ostrich(X)← X=o, ρ9. cat(X)← X=c, ρ10. bat(X)← X=b

The sets of positive and negative examples are, respectively:
E+ = {flies(r),flies(g)} E− = {flies(p1),flies(c)}.

We consider flies as the unique learnable predicate, i.e., T = {flies}. An inten-
sional solution F ′ of the given ABA learning problem can be constructed by
deriving the following two rules:

ρ11. flies(X)← bird(X), α1(X) ρ12. c_α1(X)← penguin(X)
Thus, the rules of the learnt framework F ′ are R′ = R ∪ {ρ11, ρ12} (it can be
shown that these two rules can be derived by using R1–R4 – see [22] for a similar
derivation). Let us now assume that F is contested by want of flies(p2) and
flies(b) and by want of not flies(o). We construct F ′

ai by assumption introduction.
In particular, by R3, rule ρ12 is transformed into (ρ12)ai, that is:

ρ13. c_α1(X)← penguin(X), α2(X)
and R′

ai = R∪ {ρ11, ρ13}. Now, incremental redress consists in solving the new
ABA Learning problem: (F ′

ai, ⟨E+∪{flies(p2),flies(b)}, E−∪{flies(o), {flies, c_α1,
c_α2}). By R1, we learn:

ρ14. c_α1(X)← X=o ρ15. c_α2(X)← X=p2 ρ16. flies(X)← X=b
Now, by folding, we get:

ρ17. c_α1(X)← ostrich(X) ρ18. c_α2(X)← superpenguin(X)
ρ19. flies(X)← bat(X).

The new ABA framework with rules R∪{ρ11, ρ13, ρ17, ρ18, ρ19} is an intensional
solution of the ABA Learning problem with background knowledge F ′

ai, and
hence it is an incremental redress of F ′ relative to the new positive examples
{flies(p2),flies(b)} and negative examples {flies(o)}.

Theorem 1. Let F ′′ be the incremental redress of an ABA framework F ′ with
respect to ⟨E+C , E−C ⟩. Then, F ′′ is not contested by want of c, for any claim c ∈ E+C ,
and F ′′ is not contested by want of not c, for any c ∈ E−C .

Proof. Directly from the definitions of solutions of an ABA Learning problem
(Definition 1) and of contestation of a learnt ABA framework (Definition 2). □

It might be impossible to redress an ABA framework, simply because there are
ABA Learning problems that cannnot be solved.

Example 7. The ABA Learning problem (⟨R,A, ⟩, ⟨E+, E−⟩, T), where: R =
{p←q}; A=∅; E+={q}; E−={p}; T ={p, q}, has no solution.

We now show that redress from scratch of a learnt ABA framework with
respect to a pair ⟨E+C , E−C ⟩ is possible if and only if incremental redress is possible.
This property holds also under the further requirement that ABA frameworks
are constructed by applying the transformation rules R1–R4.

10 E. De Angelis, M. Proietti, and F. Toni

Theorem 2. Let F ′ = ⟨R′,A′, ′⟩ be a solution of an ABA Learning problem
⟨F, ⟨E+, E−⟩, T ⟩, where F = ⟨R,A, ⟩. Let E+C , E−C be two sets of claims such
that: (i) the predicates of E+C ∪E

−
C belong to T , and (ii) (E+∪E+C)∩(E−∪E−C) = ∅.

(1. If incremental redress succeeds, then redress from scratch succeeds.)
If F ′′ is an incremental redress of F ′ with respect to ⟨E+C , E−C ⟩, then F ′′ is a
solution of the ABA Learning problem ⟨F, ⟨(E+ ∪ E+C), (E− ∪ E−C)⟩, T ⟩. Further-
more, if F ′ is an intensional solution derived by R1–R4 and F ′′ is an intensional
solution derived from F ′

ai by R1–R4, then F ′′ can be derived by R1–R4.
(2. If redress from scratch succeeds, then incremental redress succeeds.)
If F ′′ is a solution of the ABA Learning problem ⟨F, ⟨(E+ ∪E+C), (E− ∪E−C)⟩, T ⟩,
then there exists an incremental redress of F ′ with respect to ⟨E+C , E−C ⟩. Fur-
thermore, if F ′′ is an intensional solution derived from F by R1–R4, then an
incremental redress F ′′′ of F ′ with respect to ⟨E+C , E−C ⟩ can be derived by R1–R4.

Proof. (Sketch) (1) It is easy to see that if incremental redress succeeds, then
redress from scratch also succeeds. Indeed, a solution of the ABA learning prob-
lem (F ′

ai, ⟨(E+ ∪ E
+
C), (E− ∪ E−C)⟩, T ′

ai) shown in Definition 3 is also a solution of
(F, ⟨(E+ ∪ E+C), (E− ∪ E−C)⟩, T). Moreover, if F ′ is derived from F by applying
the transformation rules R1–R4, and also the ABA framework F ′′ resulting from
incremental redress is derived from F ′

ai by applications of R1–R4, then F ′′ can
be derived from F by R1–R4. Indeed, F ′

ai is derived by applying R3 to F ′. An
analogous property holds if we consider intensional solutions, instead of simply
solutions.
(2) We only consider that more difficult case where we use the transformation
rules R1–R4 for ABA Learning. Suppose that we derive, by R1–R4, a solution F ′

of the ABA Learning problem (F, ⟨(E+), (E−)⟩, T), and we also derive, by R1–R4,
a solution F ′ of the ABA Learning problem (F, ⟨(E+∪E+C), (E−∪E−C)⟩, T). Then,
from F ′, by repeated applications of R3, we can compute the ABA framework F ′

ai

with set of rulesR′
ai as shown in Definition 3. Now, each rule inR′

ai is of the form
H ← B′, α(X) and, without loss of generality (by possibly renaming predicates),
we can assume that α(X) is new assumption, that is, an assumption in A′ \ A,
whose contrary α(X) does not occur in R. We assume that (again, without loss
of generality), there exists a predicate, say dom with a rule dom(X) ← X = a
for each constant a occurring in the universe U . For each α(X), by rote learning
(R1) and folding (R2), we can add a rule α(X)← dom(X) and derive a new set
R′

ai ∪ R̂ of rules. Let us now consider the subset Rl of the rules of F ′′ which,
by hypothesis, have been derived from R by R1–R4. By the same sequence of
applications of the transformation rules, we can derive a new ABA framework
F ′′′ with rules Rl∪R′

ai∪R̂. Only arguments constructed by using rules in R∪Rl

can be accepted by a stable extension of F ′′′, as all others would be attacked by
a rule in R̂, which cannot be attacked. Thus, there is a one-to-one mapping ϕ
from the stable extensions of F ′′ and F ′′′ such that, for every claim c in their
common language (including the examples), F ′′ |=∆ c iff F ′′′ |=ϕ(∆) c. □

Notice that, in the proof of Point (2) Theorem 2, we introduce rules α(X)←
dom(X) that can be used for attacking all arguments supported by the assump-

Learning to Contest Argumentative Claims 11

tion α(X). This derivation step allows us to use, instead, the rules that, by
hypothesis, can be obtained by a derivation from scratch. Obviously, this is not
effective in practice, and indeed our redress algorithm of Section 4 learns suit-
able rules α(X) ← p(X) such that p(a) can be derived for a minimal set of
constants in L. For instance, in Example 6, we learn rules ρ17, ρ18, instead of
rules of the form c_αN(X)← animal(X), where animal(X)← X=a is a fact,
for all constants a occurring in the language.

4 An ASP-based Algorithm for Incremental Redress

Algorithm 1 implements a strategy, called RASP-ABAlearn, to perform the in-
cremental redress of a solution F ′ = ⟨R0,A0,

0⟩ of the ABA Learning prob-
lem (F, ⟨E+, E−⟩, T) with respect to a pair ⟨E+C , E−C ⟩ of positive and negative
examples. Algorithm 1 orchestrates the application of the transformation rules
R1–R4 presented in Section 2.2 and takes advantage of a mapping between ABA
frameworks under the stable extension semantics and ASP programs [2,13]. This
mapping, formalised by Definition 4, reduces some reasoning tasks required by
R1 and R4 to computing answer sets of an ASP program.

Definition 4. Let dom(t) hold for all tuples t of constants of L. We denote by
ASP (⟨R0,A0,

0⟩, ⟨E+, E−⟩, ⟨E+C , E−C ⟩, T) the following ASP program P .
(a) Each rule in R0 is a rule of P (rewritten in the ASP syntax)
(b) Each α∈A0 is encoded in P by the rule α :- dom(X), not c_α. ,

where c_α is an ASP atom encoding α, and vars(α) = X

(c) Each e ∈ (E+ ∪ E+C) is encoded in P as :- not e.
(d) Each e ∈ (E− ∪ E−C) is encoded in P as :- e.
(e) Each atom p(X) with p ∈ T is encoded in P as

p(X) :- newp(X). #minimize{1,X: newp(X)}.

(e.1) If p ∈ pred(α(X)) with α(X) ∈ A and B is the body in which α(X)
occurs, then P has the choice rule { newp(X) } :- b., where newp is
a new predicate name and b is the conjunction of the non-assumption
atoms in B such that vars(X) ∩ vars(b) ̸= ∅, and

(e.2) If p ∈ pred(E+C), then P has the choice rule { newp(t1);. . . ;newp(tn) }.,
where {newp(t1), . . . ,newp(tn)} = {newp(t) | p(t) ∈ E+C }.

Point (a) is a straightforward ASP translation of the rules in R0. Point (b)
introduces an ASP rule for each assumption in A0 stating that an assumption α
holds if its contrary ᾱ does not (i.e., any assumption holds by default). Points (c)
and (d) introduce integrity constraints stating that positive examples are sup-
ported by the rules and negative examples are not. Point (e) specifies how to
generate atoms that represent positive examples and contraries of assumptions.
These atoms constitute the ground truth through which R1 introduces new rules
into R0 and R4 decides to ignore examples that are already supported by rules
in R0. In particular, the choice rules at points (e.1) and (e.2) generate a set of

12 E. De Angelis, M. Proietti, and F. Toni

atoms representing contraries and positive examples, respectively, and the opti-
mization statement at point (e) enforces this set to be minimal. The optimization
statement aims at reducing the number of rules required to redress a solution.

Algorithm 1 consists of two procedures: RoLe() and Gen().
RoLe() is responsible for repeatedly applying rule R1 (Rote Learning). It

extends the background knowledge with a minimal set of facts to get a (non-
intensional) solution to the input redress problem. RoLe() checks whether the
ASP encoding of the learning problem P at line 4 has a solution. If P has
no solution, then RASP-ABAlearn fails. Otherwise, it uses an answer set of
P (line 8) to apply R1 (line 10). It has the same structure of RoLe() used in
ASP-ABAlearnB [6], but it makes use of the new ASP encoding (Definition 4)
to deal with redress.

Gen() is responsible for repeatedly applying rules R4 (Fact Subsumption), R2
(Folding), R3 (Assumption Introduction) and R1 (Rote Learning) to transform
the non-intensional solution produced by RoLe() into an intensional solution.
In contrast to ASP-ABAlearnB [6], it combines R2 and R3 to make the learnt
rules defeasible by construction (specifically, by introducing an assumption to
every rule obtained by folding). This mechanism guarantees that any solution
produced by Gen() has the form required by F ′

ai in Definition 3, and can therefore
be used as input in a subsequent run of RASP-ABAlearn to redress a solution.
In particular, Gen() takes any fact ρ introduced by RoLe() (line 14) and applies
rule R4 to check whether it is subsumed by the rules in Rl (line 16). If that is
not the case, it invokes FoldingWAsmIntro(ρ) which applies rule R2 (lines 27-29)
and R3 (lines 30-40) as follows. A repeated application of R2 transforms a non
intensional rule ρ into an intensional one by using the greedy folding strategy
presented in [7]. Then, R3 introduces an assumption in the body of ρ either
(i) by using an assumption in A introduced in a previous application of R3 or
(ii) by creating a fresh new assumption to be added to A, thereby adding the
new rule ρg to Rl. Finally, Gen() applies R1 to learn a minimal set of facts for
the contrary of the assumption occurring in ρg.

Algorithm 1 makes also use of two subsidiary functions: (i) as(P) that returns
any answer set of the ASP program P , and (ii) sat(P) that returns true if P is
satisfiable (it has at least one answer set), and false otherwise.

By using the properties of the transformation rules R1–R4 [6], we can extend
the soundness and termination results for ASP-ABAlearnB to the incremental
redress algorithm RASP-ABAlearn. We omit the proofs for lack of space.

Theorem 3 (Soundness). Let F ′ = ⟨R0,A0,
0⟩ be a solution of the ABA

Learning problem (F, ⟨E+, E−⟩, T). If Algorithm 1 with input (F ′, ⟨E+, E−⟩, ⟨E+C ,
E−C ⟩, T) terminates with success, then its output is an incremental redress of F ′

with respect to ⟨E+C , E−C ⟩. Also, the output is an intensional ABA framework.

Similarly to ASP-ABAlearnB , Algorithm RASP-ABAlearn may terminate
with failure, even if redress is possible. However, if we admit that FoldingWAs-
mIntro may return a non-intensional rule, then we get the following result.

Learning to Contest Argumentative Claims 13

Algorithm 1: RASP-ABAlearn
Input: (⟨R0,A0, 0⟩, ⟨E+, E−⟩, ⟨E+C , E−C ⟩, T): redress problem
Output: ⟨R,A, ⟩: incremental redress relative to ⟨E+C , E−C ⟩

1 R := R0; A := A0; := 0 ; Rl := ∅;
2 RoLe(); Gen(); return ⟨R,A, ⟩;
3 Procedure RoLe()
4 P := ASP(⟨R,A, ⟩, ⟨E+, E−⟩, ⟨E+C , E−C ⟩, T);
5 if ¬sat(P) then
6 fail;
7 else
8 S := as(P);

// R1. Rote Learning
9 foreach newp(t) ∈ S do

10 Rl := Rl ∪ {p(X)← X= t};
11 end
12 end
13 Procedure Gen()
14 foreach ρ : (p(X)← X = t) ∈ Rl do
15 Rl :=Rl\{ρ};

// R4. Fact Subsumption
16 if ¬ sat(ASP(⟨R ∪Rl,A, ⟩, ⟨E+, E−⟩, ⟨E+C , E−C ⟩, ∅)) then

// R2 w/ R3. Folding with Assumption Introduction
17 ⟨ρg, α(X), Cα⟩ := FoldingWAsmIntro(ρ);
18 R :=R∪{ρg};
19 A :=A∪{α(X)};
20 α(X) := c_α(X);

// R1. Rote Learning
21 foreach c_α(t) ∈ Cα do
22 Rl := Rl ∪ {c_α(X)← X= t};
23 end
24 end
25 end
26 Function FoldingWAsmIntro(ρ)

// R2. Folding
27 while foldable(ρ,R) do
28 ρ := fold(ρ,R);
29 end

// R3. Assumption Introduction
30 Let ρ be H ← B; X := vars(B);
31 if there exists α(X) ∈ A relative to B then
32 ρg :=H←B,α(X); Cα := ∅;
33 if ¬sat(ASP (⟨R ∪ {ρ},A, ⟩, ⟨E+, E−⟩, ⟨E+C , E−C ⟩, ∅)) then
34 fail;
35 end
36 else // introduce an assumption α(X), with a new predicate α
37 ρg := H←B,α(X);
38 F := ⟨R ∪ {ρ},A ∪ {α(X)}, ∪ {α(X) 7→c_α(X)}⟩;
39 Cα := {c_α(X) | c_α(X) ∈ as(ASP(F, ⟨E+, E−⟩, ⟨E+C , E−C ⟩, {c_α}))};
40 end
41 return ⟨ρg, α(X), Cα⟩;

14 E. De Angelis, M. Proietti, and F. Toni

Theorem 4 (Weak Completeness).For all inputs (F ′, ⟨E+, E−⟩, ⟨E+C , E−C ⟩,T),
Algorithm 1 terminates and returns a, possibly non-intensional, ABA framework,
if an incremental redress of F ′ with respect to ⟨E+C , E−C ⟩ exists.

5 Experimental Evaluation

This section presents the experimental evaluation to assess the effectiveness and
efficiency of RASP-ABAlearn.
Learning problems. We have formalized six ABA learning problems (reported in
the first column of Table 1) from standard datasets included in the UC Irvine
(UCI) Machine Learning Repository [21,30] by translating the features of each
tuple into facts of the background knowledge and considering such tuple as
denoting a positive or negative example according to its classification.
Implementation. We have implemented Algorithm 1 as a module of the ABALearn
tool [5]. In particular, we have (i) extended ABALearn to deal with the new for-
malization of the learning problem, and (ii) we have implemented the greedy
folding strategy presented in [7]. The implementation is based on the SWI-
Prolog [31] system (v9.2.9) and the Clingo [12] ASP solver (v5.7.1). The tool
and the datasets are available at https://github.com/ABALearn/aba_asp
Experimental processes. We have considered the two variants of redress presented
in Section 3: (S) Redress from scratch and (R) Incremental redress. The experi-
mental process consists in running Algorithm 1 with input (F , ⟨∅, ∅⟩, ⟨E+C , E−C ⟩, T),
where E+C and E−C include 90% of the tuples classified as positive and negative
examples, respectively. Then, we have performed 10 additional executions of (S)
and (R) each using a randomly selected new example.
Technical resources. Experiments have run on an Apple M1 with 8 GB of RAM.
Results. Table 1 shows the results of the experimental evaluation. Column ‘Prob-
lem’ describes the ABA learning problem: (i) the name of the problem, (ii) the
size (number of facts) of the background knowledge, and (iii) the number of pos-
itive and negative examples used for the first run of Algorithm 1. The remaining
columns report the results of each run of Algorithm 1: column ‘0’ is standard
ABA Learning (by setting ⟨E+, E−⟩ = ⟨∅, ∅⟩); columns from ‘1’ to ‘10’ report
the results of the 10 additional runs each using a randomly selected new exam-
ple. For each problem, Table 1 includes five rows: the first row gives whether
the additional randomly selected example used to redress is positive or negative
(columns ‘1’-‘10’); rows ‘TS ’ and ‘TR’ report the times in milliseconds (sum of the
CPU and System time) taken by our tool to perform the experimental processes
(S) and (R), respectively; rows ‘SS ’ and ‘SR’ report the number of rules of the
learnt ABA frameworks generated by performing (S) and (R), respectively.

The times demonstrate the computational advantages of performing incre-
mental redress (S) compared to redress from scratch (R): the time to redress is
always lower than the time to re-learn from scratch. Moreover, the results also
show that the sizes of the learnt ABA framework are comparable, as incremen-
tal redress preserves most rules and does not add many new ones. However, in

https://github.com/ABALearn/aba_asp

Learning to Contest Argumentative Claims 15

this paper we do not present any formal result characterising the relationships
between the ABA frameworks re-learnt from scratch (S) and the ones obtained
by incremental redressing via RASP-ABAlearn (R). They could even admit dif-
ferent stable extensions. The only guarantee is that they are (possibly different)
solutions of the same ABA learning problem, and thus each of them admits a
stable extension that covers all specified positive examples and does not cover
any specified negative example.

Table 1. Column ‘Problem’ reports: (i) the name of the learning problem, (ii) the
size (number of facts) of the background knowledge, and (iii) the number of positive
and negative examples ⟨|E+C |, |E

−
C |⟩ (90% of the tuples classified as positive and negative

examples) used for the first run of Algorithm 1 (i.e., with input (F , ⟨∅, ∅⟩, ⟨E+C , E−C ⟩, T)).
Column ‘0’ reports the results of the first run. Columns from ‘1’ to ‘10’ report the
results of the 10 additional runs each using a randomly selected new example. For each
learning problem, the first row gives whether the randomly selected example to redress
is positive (+) or negative (−); rows ‘TS ’ and ‘TR’ report the times in milliseconds (sum
of the CPU and System time) taken by our tool to perform a redress from scratch (S)
and an incremental redress (R), respectively; rows ‘SS ’ and ‘SR’ report the number of
rules of the learnt ABA frameworks generated by performing (S) and (R), respectively.

Problem 0 1 2 3 4 5 6 7 8 9 10

+ − − − − + − + + +
acute TS 39 31 32 31 32 32 37 41 38 40 39
495 TR 36 2 3 3 2 4 7 2 3 2 3
⟨54, 55⟩ SS 501 501 501 501 501 501 503 503 503 503 503

SR 501 501 501 501 501 501 502 502 502 502 502
+ + + − + − − − − +

autism TS 13524 14427 14552 15004 14985 15252 15048 15114 15246 15097 15329
6568 TR 12741 970 905 999 44 1126 47 46 44 44 1144

⟨171, 464⟩ SS 6953 6954 6955 6956 6956 6958 6958 6958 6958 6958 6961
SR 6953 6954 6955 6956 6956 6957 6957 6957 6957 6957 6958

+ − − − − + − + + +
breastw TS 8371 8749 9061 9258 9208 9082 9039 9086 9061 9235 9318
6325 TR 8482 36 430 35 36 36 36 35 35 37 418

⟨216, 400⟩ SS 6519 6519 6520 6520 6520 6520 6520 6520 6520 6520 6521
SR 6519 6519 6520 6520 6520 6520 6520 6520 6520 6520 6521

− − − + + + − − + −
krkp TS 40595 42557 42250 42173 42357 41985 42417 42673 42321 41987 42910
33210 TR 40475 111 1711 106 106 108 106 1682 1189 107 106

⟨1503, 1374⟩ SS 33409 33409 33410 33410 33410 33410 33410 33411 33412 33412 33412
SR 33409 33409 33410 33410 33410 33410 33410 33411 33412 33412 33412

+ − − − − + − − + +
mushroom TS 555525 559972 471200 469676 474180 552260 552583 579530 513419 551619 472482

33868 TR 471191 300 11338 280 11680 11409 279 279 280 281 279
⟨214, 1587⟩ SS 34762 34762 34763 34763 34764 34763 34763 34763 34763 34763 34763

SR 34762 34762 34763 34763 34764 34765 34765 34765 34765 34765 34765
+ + − + + − − + − +

voting TS 663 663 675 670 669 705 707 664 664 666 667
2172 TR 664 11 12 12 12 70 10 185 11 12 12
⟨98, 112⟩ SS 2230 2230 2230 2230 2230 2233 2233 2229 2229 2229 2229

SR 2230 2230 2230 2230 2230 2231 2231 2234 2234 2234 2234

16 E. De Angelis, M. Proietti, and F. Toni

6 Conclusions

We have studied the issue of contestability for ABA frameworks learnt from a
given background knowledge and sets of positive and negative examples. We
have proposed a method for incremental redress when sets of claims are subject
to contestation, either because one wishes to accept or reject them, in contrast
to the current version of the framework. In essence, we view redressing as a
way of learning from additional positive or negative examples, and hence we can
use a form of ABA Learning [6,7,22] to realise it. The most important proper-
ties we use for obtaining incrementality is the ability to learn defeasible rules
and to manipulate these rules through transformations. Our experiments show
that incremental redress is indeed much more efficient, in terms of computation
time, than re-learning from scratch, and also that the number of rules learnt
incrementally is comparable with the number of rules learnt from scratch.

This work can be extended in several directions. Here we have assumed that
contestation targets claims that are accepted or rejected by the learnt ABA
framework, but they are consistent with the examples from which learning had
been performed. We believe that our approach can be adapted to the case where
new examples are in contrast to previous ones, that is, the (human or AI) agents
that provide the examples may “change their mind”. We could also relax the
assumption that the original background knowledge is fixed, and instead allow
the addition of new background knowledge together with a contestation. For in-
stance, continuing the loan example, an applicant could support her contestation
by also providing the extra fact that she owns real estate. Another interesting
issue is the contestation of rules, rather than claims, as proposed in [20].

Finally, we would like to make a formal complexity analysis of the redressing
problem and also perform further experimental evaluation to assess the practi-
cality of our method. We have only considered tabular datasets, and it would be
interesting to make experiments on datasets where the background knowledge
consists of a set of rules, besides facts. It would also be interesting to construct
a mapping between the learning problems studied here and those considered by
IncrementalLAS [17], the incremental version of FastLAS [18], so as to be able
to make a comparison between that system and our RASP-ABAlearn.

Acknowledgments. We thank support from the Royal Society, UK (IEC\R2\222045).
Toni was partially funded by the ERC (grant agreement No. 101020934) and by
J.P. Morgan and the RAEng, UK, under the Research Chairs Fellowships scheme
(RCSRF2021\11\45). De Angelis and Proietti were supported by the MUR PRIN
2022 Project DOMAIN funded by the EU – NextGenerationEU (2022TSYYKJ, CUP
B53D23013220006, PNRR, M4.C2.1.1), by the PNRR MUR project PE0000013-FAIR
(CUP B53C22003630006), and by the INdAM - GNCS Project Argomentazione Com-
putazionale per apprendimento automatico e modellazione di sistemi intelligenti (CUP
E53C24001950001). De Angelis and Proietti are members of the INdAM-GNCS re-
search group. Finally, we would like to thank the anonymous reviewers for their con-
structive remarks.

Learning to Contest Argumentative Claims 17

References

1. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101
(1997). https://doi.org/10.1016/S0004-3702(97)00015-5

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (Dec 2011). https://doi.org/10.1145/2043174.
2043195

3. Cocarascu, O., Stylianou, A., Cyras, K., Toni, F.: Data-empowered argumenta-
tion for dialectically explainable predictions. In: Proceedings of ECAI 2020. FAIA,
vol. 325, pp. 2449–2456. IOS Press (2020). https://doi.org/10.3233/FAIA200377

4. Cyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumenta-
tion: Disputes, explanations, preferences. FLAP 4(8) (2017), http://www.
collegepublications.co.uk/downloads/ifcolog00017.pdf

5. De Angelis, E., Proietti, M., Toni, F.: Code and data for “Learning Brave
Assumption-Based Argumentation Frameworks via ASP”. Zenodo (2024), avail-
able at https://doi.org/10.5281/zenodo.13330013

6. De Angelis, E., Proietti, M., Toni, F.: Learning brave assumption-based argumen-
tation frameworks via ASP. In: Proceedings of ECAI 2024. FAIA, vol. 392, pp.
3445–3452. IOS Press (2024). https://doi.org/10.3233/FAIA240896

7. De Angelis, E., Proietti, M., Toni, F.: Greedy ABA learning for case-based reason-
ing. In: Proceedings of AAMAS 2025. p. 556–564 (2025)

8. Dignum, V., Michael, L., Nieves, J.C., Slavkovik, M., Suarez, J., Theodorou, A.:
Contesting black-box AI decisions. In: Proceedings of AAMAS 2025. p. 2854–2858
(2025)

9. Dimopoulos, Y., Kakas, A.C.: Learning non-monotonic logic programs: Learning
exceptions. In: Proceedings ECML 1995. pp. 122–137. LNCS 912, Springer (1995).
https://doi.org/10.1007/3-540-59286-5_53

10. Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Argumen-
tation in Artificial Intelligence, pp. 199–218. Springer (2009). https://doi.org/
10.1007/978-0-387-98197-0_10

11. Freedman, G., Dejl, A., Gorur, D., Yin, X., Rago, A., Toni, F.: Argumentative large
language models for explainable and contestable claim verification. In: Proceedings
of AAAI-25. pp. 14930–14939. AAAI Press (2025). https://doi.org/10.1609/
AAAI.V39I14.33637

12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP
solving with clingo. TPLP 19(1), 27–82 (2019). https://doi.org/10.1017/
S1471068418000054

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP 1988. pp. 1070–1080. MIT Press (1988)

14. Gould, A., Paulino-Passos, G., Dadhania, S., Williams, M., Toni, F.: Preference-
Based Abstract Argumentation for Case-Based Reasoning. In: Proceedings of KR
2024. pp. 394–404 (8 2024). https://doi.org/10.24963/kr.2024/37

15. Inoue, K., Haneda, H.: Learning abductive and nonmonotonic logic programs. In:
Abduction and Induction: Essays on their Relation and Integration, pp. 213–231.
Kluwer Academic (2000). https://doi.org/10.1007/978-94-017-0606-3_14

16. K.Inoue, Y.Kudoh: Learning extended logic programs. In: Proceedings of IJCAI
1997. pp. 176–181. Morgan Kaufmann (1997)

17. Law, M., Broda, K., Russo, A.: Search space expansion for efficient incremental
inductive logic programming from streamed data. In: Proceedings of IJCAI 2022.
pp. 2697–2704. ijcai.org (2022). https://doi.org/10.24963/IJCAI.2022/374

https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.3233/FAIA200377
https://doi.org/10.3233/FAIA200377
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.5281/zenodo.13330013
https://doi.org/10.3233/FAIA240896
https://doi.org/10.3233/FAIA240896
https://doi.org/10.1007/3-540-59286-5_53
https://doi.org/10.1007/3-540-59286-5_53
https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1609/AAAI.V39I14.33637
https://doi.org/10.1609/AAAI.V39I14.33637
https://doi.org/10.1609/AAAI.V39I14.33637
https://doi.org/10.1609/AAAI.V39I14.33637
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.24963/kr.2024/37
https://doi.org/10.24963/kr.2024/37
https://doi.org/10.1007/978-94-017-0606-3_14
https://doi.org/10.1007/978-94-017-0606-3_14
https://doi.org/10.24963/IJCAI.2022/374
https://doi.org/10.24963/IJCAI.2022/374

18 E. De Angelis, M. Proietti, and F. Toni

18. Law, M., Russo, A., Bertino, E., Broda, K., Lobo, J.: FastLAS: Scalable inductive
logic programming incorporating domain-specific optimisation criteria. In: Pro-
ceedings of AAAI 2020. pp. 2877–2885. AAAI Press (2020). https://doi.org/10.
1609/AAAI.V34I03.5678

19. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In:
Proceedings of JELIA 2014. pp. 311–325. LNCS 8761, Springer (2014). https:
//doi.org/10.1007/978-3-319-11558-0_22

20. Leofante, F., Ayoobi, H., Dejl, A., Freedman, G., Gorur, D., Jiang, J., Paulino-
Passos, G., Rago, A., Rapberger, A., Russo, F., Yin, X., Zhang, D., Toni, F.:
Contestable AI Needs Computational Argumentation. In: Proceedings of KR 2024.
pp. 888–896 (8 2024). https://doi.org/10.24963/kr.2024/83

21. Markelle Kelly, Rachel Longjohn, K.N.: The UCI machine learning repository,.
https://archive.ics.uci.edu

22. Proietti, M., Toni, F.: Learning assumption-based argumentation frameworks. In:
Proceedings of ILP 2022. pp. 100–116. LNCS 13779, Springer (2024). https://
doi.org/10.1007/978-3-031-55630-2_8

23. Rapberger, A., Ulbricht, M., Toni, F.: On the correspondence of non-flat
assumption-based argumentation and logic programming with negation as fail-
ure in the head. In: Proceedings of NMR 2024. CEUR Workshop Proceedings,
vol. 3835, pp. 112–121 (2024)

24. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7(3), 329–340
(2009). https://doi.org/10.1016/j.jal.2008.10.007

25. Russo, F., Toni, F.: Causal discovery and knowledge injection for contestable neural
networks. In: Proceedings of ECAI 2023. FAIA, vol. 372, pp. 2025–2032. IOS Press
(2023). https://doi.org/10.3233/FAIA230495

26. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM
TOCL 6(2), 203–231 (2005). https://doi.org/10.1145/1055686.1055687

27. Shakerin, F., Salazar, E., Gupta, G.: A new algorithm to automate inductive learn-
ing of default theories. TPLP 17(5-6), 1010–1026 (2017). https://doi.org/10.
1017/S1471068417000333

28. Tirsi, C., Proietti, M., Toni, F.: ABALearn: An automated logic-based learning
system for ABA frameworks. In: Proceedings of AIxIA 2023. pp. 3–16. LNCS 14318,
Springer (2023). https://doi.org/10.1007/978-3-031-47546-7_1

29. Toni, F.: A tutorial on assumption-based argumentation. Argument & Computa-
tion 5(1), 89–117 (2014). https://doi.org/10.1080/19462166.2013.869878

30. Wang, H., Shakerin, F., Gupta, G.: FOLD-RM: A scalable, efficient, and explain-
able inductive learning algorithm for multi-category classification of mixed data.
TPLP 22(5), 658–677 (2022). https://doi.org/10.1017/S1471068422000205

31. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1-2),
67–96 (2012)

https://doi.org/10.1609/AAAI.V34I03.5678
https://doi.org/10.1609/AAAI.V34I03.5678
https://doi.org/10.1609/AAAI.V34I03.5678
https://doi.org/10.1609/AAAI.V34I03.5678
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.24963/kr.2024/83
https://doi.org/10.24963/kr.2024/83
https://archive.ics.uci.edu
https://doi.org/10.1007/978-3-031-55630-2_8
https://doi.org/10.1007/978-3-031-55630-2_8
https://doi.org/10.1007/978-3-031-55630-2_8
https://doi.org/10.1007/978-3-031-55630-2_8
https://doi.org/10.1016/j.jal.2008.10.007
https://doi.org/10.1016/j.jal.2008.10.007
https://doi.org/10.3233/FAIA230495
https://doi.org/10.3233/FAIA230495
https://doi.org/10.1145/1055686.1055687
https://doi.org/10.1145/1055686.1055687
https://doi.org/10.1017/S1471068417000333
https://doi.org/10.1017/S1471068417000333
https://doi.org/10.1017/S1471068417000333
https://doi.org/10.1017/S1471068417000333
https://doi.org/10.1007/978-3-031-47546-7_1
https://doi.org/10.1007/978-3-031-47546-7_1
https://doi.org/10.1080/19462166.2013.869878
https://doi.org/10.1080/19462166.2013.869878
https://doi.org/10.1017/S1471068422000205
https://doi.org/10.1017/S1471068422000205

	Learning to Contest Argumentative Claims

