
LEARNING & CONTESTING
ASSUMPTION-BASED
ARGUMENTATION FRAMEWORKS
Emanuele De Angelis, Cnr-IASI, Italy

Joint work with
Maurizio Proietti, Cnr-IASI, Italy
Francesca Toni, IMPERIAL, UK

AI3, Rende, Italy
13 September 2025

ROADMAP
• Assumption-based Argumentation

ABA frameworks

• Learning
ABA frameworks

• Contesting
argumentative claims

• Redressing
as a way of learning

Rule-based systems
for non-monotonic reasoning formalisms,

can be used for explainable AI
by providing arguments for claims

Rules are defeasible by deriving
arguments for contraries of assumptions

Arguments are structured:
derivations built from rules
supported by assumptions

ROADMAP
• Assumption-based Argumentation

ABA frameworks

• Learning
ABA frameworks

• Contesting
argumentative claims

• Redressing
as a way of learning

Algorithm based on transformation rules,
implemented in Answer Set Programming

Automated logic-based learning
of ABA frameworks from
background knowledge

+
positive & negative examples

ROADMAP
• Assumption-based Argumentation

ABA frameworks

• Learning
ABA frameworks

• Contesting
argumentative claims

• Redressing
as a way of learning

highly desirable property
for human-centric AI

claims are subject to contestation:
• rejected claims may be desirable
• accepted claims may be undesirable

ROADMAP

modify rules incrementally
to reconcile contestations

• Assumption-based Argumentation
ABA frameworks

• Learning
ABA frameworks

• Contesting
argumentative claims

• Redressing
as a way of learning

< L , R , A,, ഥ
 >

Language
(set of sentences)

Rules

Assumptions

total mapping from A into L
ത𝑎 is the Contrary of 𝑎 in A

h ← s1, … ,sn
 head body

 if n=0, h ← is called fact

ABA FRAMEWORKS

flat ABAFs
assumptions are
not heads of rules

loan(X) ← employed(X), nobreaks(X)
breaks(X) ← onleave(X)

contrary of
nobreaks

assumption

an example …

facts

rules

employed(jo) ←
employed(bob) ←
employed(claudia) ←

 onleave(jo) ←
 onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

nobreaks(X) renders the rule defeasible:
it can be applied only if breaks(X) cannot be derived

ABA FRAMEWORKS

“acceptable” extensions:
sets of arguments able to
“defend” themselves from “attacks”
(as determined by the chosen semantics)
• Arguments are deductions

of claims using rules and
supported by assumptions

• Attacks are directed at the
assumptions in the support
of arguments

{ arg1: { nobreaks(jo) } ⊢ loan(jo)
 arg2: { nobreaks(bob) } ⊢ loan(bob)
 arg3: { nobreaks(claudia) } ⊢ loan(claudia)
 arg4: { } ⊢ breaks(jo)
 arg5: { } ⊢ breaks(bob) }

We focus on stable extensions any set of arguments S that
1. do not attack each other (conflict-free)
2. S attacks all arguments it does not contain

Accepted claims: loan(claudia) Rejected claims: loan(jo)
loan(bob)

employed(jo) ←
employed(bob) ←
employed(claudia) ←

 onleave(jo) ←
 onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

loan(X) ← employed(X), nobreaks(X)
breaks(X) ← onleave(X)

ABA FRAMEWORKS - SEMANTICS

at
ta

ck
s

BRAVE ABA LEARNING PROBLEM
Given

1. ABA framework F = < L , R , A , ഥ
 > (background knowledge)

with at least one stable extension
2. Ep = { positive examples }
3. En = { negative examples }
4. T = { learnable predicates }

find F’ = < L’ , R’ , A’, ഥ
 > with a stable extension S such that

i. F ⊆ F’
ii. positive are covered: every positive has an argument in S
iii. negative are not covered: no negative has an argument in S

F’ is a solution to the brave ABA learning problem

′

CAUTIOUS ABA LEARNING PROBLEM
Given

1. ABA framework F = < L , R , A , ഥ
 > (background knowledge)

with at least one stable extension
2. Ep = { positive examples }
3. En = { negative examples }
4. T = { learnable predicates }

find F’ = < L’ , R’ , A’, ഥ
 > with at least one stable extension

i. F ⊆ F’
ii. positive are covered: every positive has an argument in C
iii. negative are not covered: no negative has an argument in C

F’ is a solution to the cautious ABA learning problem

′

C = ځk

n
Si

S1,…,Sn: stable
extensions of F’

ABA LEARNING
VIA TRANSFORMATION RULES
Learning ABA frameworks relies upon a set of transformation rules

< L1 , R1 , A1, ഥ
 > < L2 , R2 , A2, ഥ

 > … < Ln , Rn , An, ഥ
 >

A strategy controls the order of application of the transformation rules

∈

background knowledge intensional solution

{ Rote Learning, Folding, Assumption Introduction, Subsumption }
learnt rules do not

make explicit
reference to specific
values in the universe

1 2 n

ABA LEARNING at work

1. Background Knowledge < L , R , A , ഥ >

Rules
{ employed(jo)←, employed(bob)←, employed(claudia)←,
 onleave(jo)←, onleave(bob)←,

 maternity(jo)←, maternity(diana)← }

Assumptions
{ nobreaks(X) }

Language
{ employed(X)←, onleave(X)←,
 maternity(X)←, loan(X)← }

Contraries
{ nobreaks(X) = breaks(X) }

2. Positive examples Ep = { loan(claudia) }
3. Negative examples En = { loan(bob) }

4. Learnable Predicates T = { loan }

X ∈ {claudia,jo,bob,diana}

TRANSFORMATION RULES at work
ROTE LEARNING
Add facts
• from positive examples
• for contraries of assumptions
to get a (non-intensional) solution

It’s enough to learn

 loan(X) ← X=claudia
to get

 R’ = R U { loan(X) ← X=claudia }

Ep = { loan(claudia) }

TRANSFORMATION RULES at work
FOLDING
Towards an intensional solution …

Generalise
 loan(X) ← X=claudia
to
 loan(X) ← employed(X)
by using

 employed(X) ← X=claudia

WARNING
It also constructs an argument

for a negative example: loan(bob)

ABA LEARNING is parametric w.r.t. the folding strategy
It includes a portfolio of strategies, such as “nondeterministic” and “greedy” folding

TRANSFORMATION RULES at work
ASSUMPTION INTRODUCTION
Repairing the ABA framework to get a solution …

Add an assumption to avoid
• rejecting a positive example
• accepting a negative example

loan(X) ← employed(X), nobreaks(X)

with contrary
breaks(X)

AND REPEAT!
Rote Learning breaks(X) ← X=bob

Folding breaks(X) ← onleave(X)

No more rules to learn:
LEARNING COMPLETED!

employed(jo) ←
employed(bob) ←
employed(claudia) ←

 onleave(jo) ←
 onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

loan(X) ← employed(X), nobreaks(X)
breaks(X) ← onleave(X)

Rules in the Background Knowledge

Learnt rules

TRANSFORMATION RULES at work
ASSUMPTION INTRODUCTION
Repairing the ABA framework to get a solution …

Add an assumption to avoid
• rejecting a positive example
• accepting a negative example

loan(X) ← employed(X), nobreaks(X)

with contrary
breaks(X)

p2(X) ← Q(X), asm_Q(X)

asm_Q(X)
is “relative to”

Q(X)

reuse

p1(X) ← Q(X), asm_Q(X)

To get termination …

…

A GLIMPSE OF
IMPLEMENTATION via ASP
• ASP encoding

loan(X) :- employed(X), nobreaks(X). ...
nobreaks(X) :- employed(X), not breaks(X).
breaks(X) :- onleave(X).

{ breaksP(X) } :- onleave(X).
breaks(X) :- breaksP(X).
#minimize{1,X: breaksP(X)}.
:- not loan(claudia).
:- loan(bob).

• Answer sets
 (1-to-1 correspondence with Stable extensions)

{ breaksP(bob), ... }, ...

• Rote learning
breaks(X) ← X=bob

Clingo (ASP)
+

https://github.com/ABALearn/aba_asp

learning facts
for contraries

EXPERIMENTS
ASP-ABAlearnB

https://doi.org/10.5281/zenodo.13330013

Learning problem BK Ep En ASP-ABAlearnB ILASP
Flies 8 4 2 0.01 0.09
Flies_bird&planes 10 5 2 0.02 0.25
Innocent 15 2 2 0.01 1.84
Nixon_diamond 6 1 1 0.01 unsat
Nixon_diamond_2 15 3 2 0.01 unsat
Tax_law 16 2 2 0.02 0.66
Tax_law_2 17 2 2 0.01 0.92
Acute 96 21 19 0.04 unsat
Autism 5716 189 515 23.43 timeout
Breast-w 6291 241 458 16.32 timeout

CONTESTATION

Ep, En, FBK (predicted) claimsF’

c ?

Given
1. an ABA framework F’

solution of the ABA learning problem (F, <Ep, En>, T)
2. a new claim (example) c ∉ Ep ∪ En

want of c

want of
not c

⊕

CONTESTATION

iff ∄ stable extension S of F’ s.t.

Given
1. an ABA framework F’

solution of the ABA learning problem (F, <Ep, En>, T)
2. a new claim (example) c ∉ Ep ∪ En

F’ is contested by

want of c want of not c

Ep ∪ { c } are covered in S
&

En are not covered in S

Ep are covered in S
 &

 En ∪ { c } are not covered in S

REDRESS
When a solution F’ is contested by either want of c or want of not c,
redressing consists in deriving a solution F’’ of the ABA learning problem
• (want of c) (F, ⟨ Ep ∪ { c } , En ⟩, T)
• (want of not c) (F, ⟨ Ep , En ∪ { c } ⟩, T)

How to redress

from scratch
trivial form

1. forgetting F’

2. solving the original problem w/c
either (F, ⟨ Ep ∪ { c } , En ⟩, T)
or (F, ⟨ Ep , En ∪ { c } ⟩, T)

Incremental
modifies F’ as little as possible

1. selecting some of the learnt rules &
making them defeasible by assumption introduction,
to get the new problem (F’ai, ⟨ Ep, En ⟩, T’ai)

2. solving the new problem w/c
either (F’ai, ⟨ Ep ∪ { c } , En ⟩, T’ai)
or (F’ai, ⟨ Ep , En ∪ { c } ⟩, T’ai)

INCREMENTAL REDRESS w/ABA Learning

employed(jo) ←
employed(bob) ←
employed(claudia) ←

 onleave(jo) ←
 onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

loan(X) ← employed(X), nobreaks(X)

is contested by the want of loan(jo), which is not covered by any stable extension

We can incrementally modify F’′ by applying the transformation rules

Suppose (the current solution) F’

breaks(X) ← onleave(X), alpha(X)

c_alpha(X) ← X=jo

c_alpha(X) ← maternity(X)

breaks(X) ← onleave(X)

(1) by assumption introduction rule

(2) by rote learning rule

(3) by folding rule

(0
) S

el
ec

t t
he

 le
ar

nt
 ru

le
 to

 re
dr

es
s

to get a new solution F’’ with at least one stable extension covering loan(jo)

EXPERIMENTS
RASP-ABAlearn

https://github.com/ABALearn/aba_asp

size of the background knowledge (# rules) ⟨ |Ep| , |En| ⟩
learnt rules

time in ms

Learning problems
six standard datasets of the UCI ML Repo as ABA learning problems

Experimental processes
Redress from scratch (S) vs. Incremental redress (R)
11 runs of RASP-ABALearn:
0: run (S) and (R) using 90% of positive and negative examples
1-10: run (S) and (R) each using a randomly selected new example
 either positive or negative

CONCLUSIONS
• Automatic learning of ABA frameworks from a

background knowledge, and
positive and negative examples

• Contestability for ABA frameworks

• Redressing as a way of learning
from additional positive or negative examples

• Experiments show
• folding & assumption introduction

improve effectiveness in learning
• incremental redress is more efficient

than re-learning from scratch

	Slide 1: LEARNING & CONTESTING ASSUMPTION-BASED ARGUMENTATION FRAMEWORKS
	Slide 2: ROADMAP
	Slide 3: ROADMAP
	Slide 4: ROADMAP
	Slide 5: ROADMAP
	Slide 6
	Slide 7
	Slide 8
	Slide 9: BRAVE ABA LEARNING problem
	Slide 10: CAUTIOUS ABA LEARNING problem
	Slide 11: ABA LEARNING via TRANSFORMATION RULES
	Slide 12: ABA LEARNING at work
	Slide 13: TRANSFORMATION RULES at work ROTE LEARNING
	Slide 14: TRANSFORMATION RULES at work FOLDING
	Slide 15: TRANSFORMATION RULES at work ASSUMPTION INTRODUCTION
	Slide 16: And repeat!
	Slide 17: TRANSFORMATION RULES at work ASSUMPTION INTRODUCTION
	Slide 18: A Glimpse of IMPLEMENTATION via ASP
	Slide 19: EXPERIMENTS
	Slide 20: Contestation
	Slide 21: Contestation
	Slide 22: REDRESS
	Slide 23: INCREMENTAL REDRESS w/ABA Learning
	Slide 24: EXPERIMENTS
	Slide 25: Conclusions
	Slide 26: AGENTIFIED ARGUMENTATIVE LEARNING
	Slide 27
	Slide 28: Non-fLAT ABA Frameworks
	Slide 30: ARGUMENTATIVE LEARNING w/ABA Learning
	Slide 31: ABA LEARNING at work
	Slide 32: RUN-TIME INFERENCE
	Slide 33: RUN-TIME INFERENCE
	Slide 34: RUN-TIME INFERENCE
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Conclusions

