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ROADMAP
• Assumption-based Argumentation

ABA frameworks

• Learning 
ABA frameworks

• Contesting
argumentative claims

• Redressing 
as a way of learning



Rule-based systems 
for non-monotonic reasoning formalisms, 

can be used for explainable AI 
by providing arguments for claims

Rules are defeasible by deriving 
arguments for contraries of assumptions

Arguments are structured: 
derivations built from rules 
supported by assumptions
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Algorithm based on transformation rules, 
implemented in Answer Set Programming

Automated logic-based learning 
of ABA frameworks from 
background knowledge 

+ 
positive & negative examples
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highly desirable property 
for human-centric AI 

claims are subject to contestation:
• rejected claims may be desirable      
• accepted claims may be undesirable

ROADMAP

modify rules incrementally 
to reconcile contestations

• Assumption-based Argumentation
ABA frameworks

• Learning 
ABA frameworks
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argumentative claims

• Redressing 
as a way of learning



< L , R , A,, ഥ
 >

Language
(set of sentences)

Rules

Assumptions

total mapping from A into L
ത𝑎  is the Contrary of 𝑎 in A

h ← s1, … ,sn
          head        body

 if n=0,  h ←   is called fact 

ABA FRAMEWORKS

flat ABAFs 
assumptions are 
not heads of rules



loan(X) ← employed(X), nobreaks(X)
breaks(X) ← onleave(X)

contrary of 
nobreaks 

assumption

an example …

facts

rules

employed(jo) ←        
employed(bob) ←
employed(claudia) ←

  onleave(jo) ←
  onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

nobreaks(X) renders the rule defeasible: 
it can be applied only if breaks(X) cannot be derived

ABA FRAMEWORKS



“acceptable” extensions:
sets of arguments able to 
“defend” themselves from “attacks”
(as determined by the chosen semantics) 
• Arguments are deductions

of claims using rules  and
supported by assumptions

• Attacks are directed at the 
assumptions in the support 
of arguments

{       arg1: { nobreaks(jo) } ⊢ loan(jo)
          arg2: { nobreaks(bob) } ⊢ loan(bob)
          arg3: { nobreaks(claudia) } ⊢ loan(claudia)
          arg4: { } ⊢ breaks(jo)
          arg5: { } ⊢ breaks(bob)                      }

We focus on stable extensions any set of arguments S that 
1. do not attack each other (conflict-free)
2. S attacks all arguments it does not contain

Accepted claims: loan(claudia) Rejected claims: loan(jo)
loan(bob)

employed(jo) ←        
employed(bob) ←
employed(claudia) ←

  onleave(jo) ←
  onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

loan(X) ← employed(X), nobreaks(X)
breaks(X) ← onleave(X)

ABA FRAMEWORKS - SEMANTICS

at
ta

ck
s



BRAVE ABA LEARNING PROBLEM
Given 

1. ABA framework  F = < L , R , A , ഥ
 >   (background knowledge)             

with at least one stable extension
2.  Ep = { positive examples }
3.  En = { negative examples }
4.   T  = { learnable predicates } 

find  F’ = < L’ , R’ , A’, ഥ
 >  with a stable extension S such that

i.  F ⊆ F’
ii.  positive are covered: every positive has an argument in S
iii.  negative are not covered: no negative has an argument in S

F’ is a solution to the brave ABA learning problem

′



CAUTIOUS ABA LEARNING PROBLEM
Given 

1. ABA framework  F = < L , R , A , ഥ
 >   (background knowledge)               

with at least one stable extension
2.  Ep = { positive examples }
3.  En = { negative examples }
4.   T  = { learnable predicates } 

find  F’ = < L’ , R’ , A’, ഥ
 >  with at least one stable extension

i.  F ⊆ F’
ii.  positive are covered: every positive has an argument in C
iii.  negative are not covered: no negative has an argument in C

F’ is a solution to the cautious ABA learning problem

′

C = ځk

n
Si

S1,…,Sn: stable 
extensions of F’ 



ABA LEARNING
VIA TRANSFORMATION RULES
Learning ABA frameworks relies upon a set of  transformation rules

< L1 , R1  , A1, ഥ
 >   < L2 , R2  , A2, ഥ

 >    …    < Ln , Rn , An, ഥ
 >

A strategy controls the order of application of the transformation rules

∈

background knowledge intensional solution

{ Rote Learning, Folding, Assumption Introduction, Subsumption }
learnt rules do not 

make explicit 
reference to specific 
values in the universe 

1 2 n



ABA LEARNING at work

1. Background Knowledge     < L ,  R ,  A ,  ഥ  >

Rules
{ employed(jo)←, employed(bob)←, employed(claudia)←,
  onleave(jo)←, onleave(bob)←, 

    maternity(jo)←, maternity(diana)←               }

Assumptions 
{ nobreaks(X) }

Language
{ employed(X)←, onleave(X)←, 
  maternity(X)←, loan(X)←   }

Contraries  
{ nobreaks(X) = breaks(X) }

2. Positive examples         Ep = { loan(claudia) } 
3. Negative examples       En = { loan(bob) }

4. Learnable Predicates      T  = { loan }

X ∈ {claudia,jo,bob,diana} 



TRANSFORMATION RULES at work
ROTE LEARNING
Add facts
• from positive examples                
• for contraries of assumptions
to get a (non-intensional) solution

It’s enough to learn  

      loan(X) ← X=claudia 
to get 

    R’ = R  U { loan(X) ← X=claudia }

Ep = { loan(claudia) } 



TRANSFORMATION RULES at work
FOLDING
Towards an intensional solution … 

Generalise
   loan(X) ←   X=claudia 
to
   loan(X) ← employed(X)
by using

   employed(X) ← X=claudia

WARNING
It also constructs an argument 

for a negative example: loan(bob)

ABA LEARNING is parametric w.r.t. the folding strategy 
It includes a portfolio of strategies, such as “nondeterministic” and “greedy” folding



TRANSFORMATION RULES at work
ASSUMPTION INTRODUCTION
Repairing the ABA framework to get a solution …

Add an assumption to avoid 
• rejecting a positive example
• accepting a negative example  

loan(X) ← employed(X), nobreaks(X)

with contrary
breaks(X)



AND REPEAT!
Rote Learning breaks(X) ← X=bob

Folding breaks(X) ← onleave(X)

No more rules to learn: 
LEARNING COMPLETED!

employed(jo) ←        
employed(bob) ←
employed(claudia) ←

 onleave(jo) ←
 onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

loan(X) ← employed(X), nobreaks(X)
breaks(X) ← onleave(X)

Rules in the Background Knowledge

Learnt rules



TRANSFORMATION RULES at work
ASSUMPTION INTRODUCTION
Repairing the ABA framework to get a solution …

Add an assumption to avoid 
• rejecting a positive example
• accepting a negative example  

loan(X) ← employed(X), nobreaks(X)

with contrary
breaks(X)

p2(X) ← Q(X), asm_Q(X)

asm_Q(X) 
is “relative to”

Q(X)

reuse

p1(X) ← Q(X), asm_Q(X)

To get termination … 

…



A GLIMPSE OF 
IMPLEMENTATION via ASP
• ASP encoding

loan(X) :- employed(X), nobreaks(X). ...
nobreaks(X) :- employed(X), not breaks(X).
breaks(X) :- onleave(X).

{ breaksP(X) } :- onleave(X).
breaks(X) :- breaksP(X).
#minimize{1,X: breaksP(X)}.
:- not loan(claudia). 
:- loan(bob). 

• Answer sets 
    (1-to-1 correspondence with Stable extensions) 

{ breaksP(bob), ... }, ... 

• Rote learning
breaks(X) ← X=bob 

Clingo (ASP)
+

https://github.com/ABALearn/aba_asp

learning facts 
for contraries 



EXPERIMENTS
ASP-ABAlearnB

https://doi.org/10.5281/zenodo.13330013 

Learning problem BK Ep En ASP-ABAlearnB ILASP
Flies 8 4 2 0.01 0.09
Flies_bird&planes 10 5 2 0.02 0.25
Innocent 15 2 2 0.01 1.84
Nixon_diamond 6 1 1 0.01 unsat
Nixon_diamond_2 15 3 2 0.01 unsat
Tax_law 16 2 2 0.02 0.66
Tax_law_2 17 2 2 0.01 0.92
Acute 96 21 19 0.04 unsat
Autism 5716 189 515 23.43 timeout
Breast-w 6291 241 458 16.32 timeout



CONTESTATION

Ep,  En, FBK (predicted) claimsF’

c ? 

Given
1. an ABA framework F’

solution of the ABA learning problem ( F, <Ep, En>, T )
2. a new claim (example) c ∉ Ep ∪ En

want of c

want of 
not c

⊕



CONTESTATION

iff ∄ stable extension S of F’ s.t.

Given
1. an ABA framework F’

solution of the ABA learning problem ( F, <Ep, En>, T )
2. a new claim (example) c ∉ Ep ∪ En

F’ is contested by

want of c want of not c

Ep ∪ { c } are covered in S 
&

En are not covered in S

Ep are covered in S 
 &

 En ∪ { c } are not covered in S 



REDRESS
When a solution F’ is contested by either want of c or want of not c, 
redressing consists in deriving a solution F’’ of the ABA learning problem
• (want of c)   ( F,  ⟨ Ep ∪ { c } , En ⟩,  T )
• (want of not c)  ( F,  ⟨ Ep , En ∪ { c } ⟩,  T )

How to redress 

from scratch
trivial form

1. forgetting F’ 

2. solving the original problem w/c
either    ( F, ⟨ Ep ∪ { c } , En ⟩, T )
or ( F, ⟨ Ep , En ∪ { c } ⟩, T )

Incremental
modifies F’ as little as possible 

1. selecting some of the learnt rules  &
making them defeasible by assumption introduction,
to get the new problem ( F’ai, ⟨ Ep, En ⟩, T’ai ) 

2. solving the new problem w/c 
either    ( F’ai, ⟨ Ep ∪ { c } , En ⟩, T’ai )
or            ( F’ai, ⟨ Ep , En ∪ { c } ⟩, T’ai ) 



INCREMENTAL REDRESS w/ABA Learning

employed(jo) ←        
employed(bob) ←
employed(claudia) ←

  onleave(jo) ←
  onleave(bob) ←

maternity(jo) ←
maternity(diana) ←

loan(X) ← employed(X), nobreaks(X)

is contested by the want of  loan(jo),  which is not covered by any stable extension

We can incrementally modify F’′ by applying the transformation rules

Suppose (the current solution) F’

breaks(X) ← onleave(X), alpha(X)

c_alpha(X) ← X=jo

c_alpha(X) ← maternity(X)

breaks(X) ← onleave(X)

(1) by assumption introduction rule

(2) by rote learning rule

(3) by folding rule

(0
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to get a new solution F’’ with at least one stable extension covering loan(jo)   



EXPERIMENTS
RASP-ABAlearn

https://github.com/ABALearn/aba_asp

size of the background knowledge (# rules) ⟨ |Ep| , |En| ⟩
# learnt rules

time in ms

Learning problems 
six standard datasets of the UCI ML Repo as ABA learning problems

Experimental processes
Redress from scratch (S) vs. Incremental redress (R)
11 runs of RASP-ABALearn:
0:        run (S) and (R) using 90% of positive and negative examples
1-10: run (S) and (R) each using  a randomly selected new example  
            either positive or negative 



CONCLUSIONS
• Automatic learning of ABA frameworks from a 

background knowledge, and
positive and negative examples

• Contestability for ABA frameworks

• Redressing as a way of learning
from additional positive or negative examples

• Experiments show 
• folding & assumption introduction 

improve effectiveness in learning
• incremental redress is more efficient 

than re-learning from scratch
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