
Software Verification and Synthesis using
Constraints and Program Transformation

Emanuele De Angelis

University ‘G. d’Annunzio’ of Chieti–Pescara

Convegno Italiano di Logica Computazionale 2015
Genova, 1 July, 2015

Summary

Verification framework

Sequential Programs (e.g., C programs)

Formal language: Constraint Logic Programming

Proof technique: Program Transformation

Implementation and Experimental Results

the VeriMAP tool

Synthesis framework

Concurrent Programs (e.g., Peterson algorithm)

Formal language: Answer Set Programming

Synthesis technique: Answer Set Solvers

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 1 / 20

Verification Conditions as CLP Programs

Given the program prog and the specification {ϕinit} prog {¬ϕerror }

{ x =0 ∧ y =0 ∧ n≥1 }
while(x < n) {

x = x +1 ;
y = y +2 ;

}

{ y >x }

Verification Conditions (VCs) can be encoded as a set of clauses P

incorrect :- X=0, Y=0, N ≥ 1, while(X, Y, N). Initialization
while(X,Y,N) :- X<N, X1=X+1, Y1=Y+2, while(X1,Y1,N). Loop body
while(X,Y,N) :- X≥N, Y≤X. Exit

VCs are satisfiable iff incorrect not in the least model M(P) of P
How to (automatically)
(A) generate the VCs for prog ?
(B) prove the satisfiability of the VCs ?

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 2 / 20

The Transformation-based Verification Method

Transformation of Constraint Logic Programs (CLP) to:
generate the Verification Conditions (VCs)
prove the satisfiability of the VCs

Interpreter: Int Specification: {ϕinit} prog {¬ϕerror }

Verification Conditions: VCs
(1) Encode

into CLP

?

prog correct prog incorrect Verification method: (1);(2);(3)+

(2) Specialize Int w.r.t. prog
(generate the VCs)

(3) Propagate ϕinit or ϕerror and Analyze
(prove the satisfiability of the VCs)

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 3 / 20

Encoding partial correctness into CLP: the interpreter Int
Proof rules for safety (reachability of error configurations)

incorrect :- initial(X), phiInit(X), reach(X).
reach(X) :- tr(X,Y), reach(Y).
reach(X) :- final(X), phiError(X).

Operational semantics of the programming language
tr(cf(Lab1,Cmd1),cf(Lab2,Cmd2)) :- · · ·

e.g., operational semantics of conditionals
L: if(Expr) { tr(cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :-

L1: . . . beval(Expr,S), % expression is true
} at(L1,C). % next command
else tr(cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :-

L2: . . . beval(not(Expr),S), % expression is false
} at(L2,C). % next command

Theorem (Correctness of Encoding)
prog is correct iff incorrect 6∈ M(Int) (the least model of Int)

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 4 / 20

Encoding program and specification into CLP

Given the program prog and the specification {ϕinit} prog {¬ϕerror }

{ x =0 ∧ y =0 ∧ n≥1 }
while(x < n) {

x = x +1 ;
y = y +2 ;

}

{ y >x }

CLP encoding of ϕinit and ϕerror

phiInit(X, Y, N) :- X=0, Y=0, N≥1.
phiError(X, Y):- Y≤X.

CLP encoding of program prog
A set of at(label, command) facts.
while commands are replaced by
ite and goto.
at(0, ite(less(x, n), 1, h)).
at(1, asgn(x, plus(x, 1))).
at(2, asgn(y, plus(y, 2))).
at(3, goto(0)).
at(h, halt).

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 5 / 20

Generating Verification Conditions

The specialization of Int w.r.t. prog removes all references to:
tr (i.e., the operational semantics of the imperative language)

at (i.e., the encoding of prog)

The Specialized Interpreter for prog (Verification Conditions)
incorrect :- X=0, Y=0, N ≥ 1, while(X, Y, N).
while(X,Y,N) :- X<N, X1=X+1, Y1=Y+2, while(X1,Y1,N).
while(X,Y,N) :- X≥N, Y≤X.

New predicates correspond to a subset of the program points:
while(X,Y,N) :- reach(cf(cmd(0,ite(...)),

[[int(x),X],[int(y),Y],[int(n),N]])).

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 6 / 20

Rule-based Program Transformation

P

P1

P2

TransfP

R

R

R

R

Rule-based program transformation

transformation rules:
R ∈ { Unfolding, Clause Removal, Definition, Folding }

the transformation rules preserve the least model:
Theorem (Rules are semantics preserving)
incorrect ∈ M(P) iff incorrect ∈ M(TransfP)

the rules must be guided by a strategy.

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 7 / 20

The Unfold/Fold Transformation Strategy

Transform(P)

TransfP = ∅;
Defs = {incorrect :- initial(X), phiInit(X), reach(X)};
while ∃q ∈ Defs do

% execute a symbolic evaluation step (resolution)
Cls = Unfold(q);
% remove unsatisfiable and subsumed clauses
Cls = ClauseRemoval(Cls);
% introduce new predicates (e.g., a loop invariant)
Defs = (Defs − {q}) ∪ Define(Cls);
% match a predicate definition
TransfP = TransfP ∪ Fold(Cls, Defs);

od

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 8 / 20

Propagation of ϕinit

The transformation of the VCs P

VCs for prog (Specialized interpreter Int)
incorrect :- X=0, Y=0, N ≥ 1, while(X, Y, N).
while(X,Y,N) :- X<N, X1=X+1, Y1=Y+2, while(X1,Y1,N).
while(X,Y,N) :- X≥N, Y≤X.

by propagating the constraint X=0, Y=0, N ≥ 1,
modifies the structure of P and derives the new VCs TransfP

Transformed VCs for prog
incorrect :- X=0, Y=0, N≥1 new1(X, Y, N).
new1(X, Y, N) :- X=0, Y=0, N≥1, X1=1, Y1=2, new2(X1, Y1, N).
new2(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, X1≥1, Y1≥2, new2(X1, Y1, N).
new2(X, Y, N) :- X≥N, Y≤X, Y≥0, N≥1.

The fact incorrect is not in TransfP, we cannot infer that prog is incorrect.
A constrained fact is in TransfP, we cannot infer that prog is correct.

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 9 / 20

Propagation of ϕerror

Transformed VCs for prog (after the propagation of ϕinit)
incorrect :- X=0, Y=0, N≥1, new1(X, Y, N).
new1(X, Y, N) :- X=0, Y=0, N>1, X1=1, Y1=2, new2(X1, Y1, N).
new2(X, Y, N) :- X<N, X1=X+1, Y1=Y+2, X1≥1, Y1≥2, new2(X1, Y1, N).
new2(X, Y, N) :- X≥N, Y≤X, Y≥0, N≥1.

Reversed VCs
incorrect :- X≥N, Y≤X, Y≥0, N≥1, new2(X, Y, N).
new2(X1, Y1, N) :- X=0, Y=0, N>1, X1=1, Y1=2, new1(X, Y, N).
new2(X1, Y1, N) :- X<N, X1=X+1, Y1=Y+2, X1≥1, Y1≥2, new2(X, Y, N).
new1(X, Y, N) :- X=0, Y=0, N≥1.

by propagating ϕerror , that is, the constraint X≥N, Y≤X, Y≥0, N≥1.

Transformed VCs for prog (after the propagation of ϕerror)
incorrect :- X≥N, Y≤X, Y≥0, N≥1, new3(X, Y, N).
new3(X1, Y1, N) :- X<N, X1=X+1, Y1=Y+2, X>Y, Y≥0, new3(X, Y, N).

No facts: prog is correct.
Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 10 / 20

Verification Framework

Source
to CLP

Translator
Step (0) Translate Prog

and ϕ into CLP +

Program prog
(written in L)
Specification ϕ
(specified in M)

Verification
Condition
Generator

(Semantics of L)
(Semantics of M)

Interpreter Int
Step (1) Specialize Int w.r.t. T

(Removal of the Interpreter)

Unfold/Fold
Transformer

Step (2) Transform verification
conditions w.r.t. ϕ

AnalyzerStep (3) Check whether or
not ϕ holds in Q

true false

Initial CLP Program T

Verification Conditions (VC’s) V

Transformed VC’s S
unknown

+
VC’s S

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 11 / 20

VeriMAP: A Tool for Verifying Programs through Transformations
http://map.uniroma2.it/VeriMAP/

Fully automatic software model checker for C programs.

CIL (C Intermediate Language) by Necula et al.
MAP Transformation System by the MAP group
(IASI-CNR, ‘G. d’Annunzio’ and ‘Tor Vergata’ Universities)

C to CLP
Translator

Unfold/Fold
Transformer Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false
Property

Proof Rules

Iterated Verifier

Constraint
Solvers

Unfolding
Operators

Verification
Conditions
Generator

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 12 / 20

Experimental Evaluation - Integer Programs
http://map.uniroma2.it/VeriMAP/

216 examples taken from: DAGGER, TRACER, InvGen, and TACAS 2013
Software Verification Competition.

VeriMAP ARMC HSF(C) TRACER
1 correct answers 185 138 160 103
2 safe problems 154 112 138 85
3 unsafe problems 31 26 22 18
4 incorrect answers 0 9 4 14
5 false alarms 0 8 3 14
6 missed bugs 0 1 1 0
7 errors 0 18 0 22
8 timed-out problems 31 51 52 77

9 total time 10717.34 15788.21 15770.33 23259.19
10 average time 57.93 114.41 98.56 225.82

ARMC [Podelski, Rybalchenko PADL 2007]
HSF(C) [Grebenshchikov et al. TACAS 2012]
TRACER [Jaffar, Murali, Navas, Santosa CAV 2012]

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 13 / 20

Synthesis of protocols for concurrent programs

Answer set Programming:

Reduce the design of protocols to the computation of answer sets
logic program ⇒ encoding of a problem
answer sets (model) ⇒ solutions of a problem

ASP Systemlogic program P { AS | AS |= P}

ϕ P

. . . CnC2C1 AS2AS1 . . . ASn

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 14 / 20

Specification: Behavioural Properties

Time dependant behavioural properties of Concurrent Programs:
safety
liveness

Specified in a Temporal Logic, i.e., Computation Tree Logic (CTL):
path quantifiers: for all paths A, for some paths E
temporal operators: eventually F, globally G, next X,....

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 15 / 20

Specification: Structural Properties

Process structure: encoded as a function f

either the identity function id

P P P P· · ·
id

id id id id

(Dijkstra’s semaphore)

or a generator of a cyclic group {id , f , . . . , f k−1} of order k

P1 P2 Pk−1 Pk· · ·
f

f f f f

(Peterson’s algorithm)

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 16 / 20

A 2-process protocol

Given the specification ϕ

Behavioural property: AG ¬ (x1 =u ∧ x2 =u) (mutual exclusion)
Structural property: 0

1
0
1

(A) encode it as ASP Program P
false :- not ag(neg(and(local(p1,u),local(p2,u)))).

(B) compute the answer sets of P
(C) decode the protocols from the answer sets

x1 := t; x2 := t; y := 0
P1 : true → if P2 : true → if

x1 =t ∧ y=0 → x1 :=u; y :=0; x2 =u ∧ y=1 → x2 :=t; y :=1;
‖ x1 =t ∧ y=0 → x1 :=w; y :=1; ‖ x2 =t ∧ y=1 → x2 :=w; y :=0;

fi fi

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 17 / 20

Complexity of the synthesis procedure

Theorem

For any number k >1 of processes, for any symmetric program
structure σ over L and D, and for any CTL formula ϕ, an answer
set of the logic program Πϕ ∪ Πσ can be computed in

(i) exponential time w.r.t. k,
(ii) linear time w.r.t. |ϕ|, and
(iii) nondeterministic polynomial time w.r.t. |L| and w.r.t. |D|.

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 18 / 20

Experimental results
Specification:

Mutual Exclusion (ME)
Starvation Freedom (SF)
Bounded Overtaking (BO)
Maximal Reactivity (MR)

Synthesized k-process concurrent programs:

Program Satisfied Properties |ans(P)| Time (sec)

mutex for 2
processes

ME 10 0.011
ME 10 0.012
ME, SF 2 0.032
ME, SF, BO 2 0.045
ME, SF, BO, MR 2 0.139

mutex for 3
processes

ME 9 0.036
ME 14 0.036
ME, SF 6 3.487
ME, SF, BO 4 4.323

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 19 / 20

Conclusions

Verification Framework, which is parametric with respect to
the language of the programs to be verified, and
the logic of the property to be checked.

Instantiated to prove partial correctness of integer and array C programs
Implemented and available as a stand-alone system: the VeriMAP tool,
which is competitive with respect to others CLP-based software model
checkers.

Synthesis Framework, a fully declarative solution
reduces the design of a concurrent program
to the design of its formal specification
independent of the ASP solver

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation 20 / 20

