
Verification of Programs by Combining
Iterated Specialization with Interpolation

Emanuele De Angelis1,3, Fabio Fioravanti1,
Jorge A. Navas2, and Maurizio Proietti3

1University of Chieti-Pescara, Italy
2NASA Ames Research Center, USA

3CNR - Istituto di Analisi dei Sistemi ed Informatica, Italy

HCVS 2014
Vienna, July 17, 2014

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 1 / 23



Motivations: Proving Partial Correctness (1)

Given the program increment and the specification ϕ

while(∗) {
x = x + y ;
y = y + 1 ;

}

{x=1∧ y=0} increment {x≥y}

(A) generate the verification conditions (VCs)

1. x=1 ∧ y=0→ P(x , y) Initialization
2. P(x , y)→ P(x + y , y + 1) Loop invariant
3. P(x , y)→ x≥y Exit

(B) prove they are satisfiable

If satisfiable then the Hoare triple holds.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 2 / 23



Motivations (2)

I Constraint Logic Programming (CLP) is a metalanguage for
representing
programs and their semantics,
properties and their proof rules

i.e., for representing the Verification Conditions (VCs)

1. x=1 ∧ y=0→ P(x , y) Initialization
2. P(x , y)→ P(x + y , y + 1) Loop invariant
3. P(x , y)→ x≥y Exit

The VCs are encoded as a constraint logic program V :

1. p(X,Y) :- X=1, Y=0. Constrained fact
2. p(X1,Y1) :- X1=X+Y, Y1=Y+1, p(X,Y). Rule
4. unsafe :- Y>X, p(X,Y). Query

The VCs are satisfiable iff unsafe not in the least model M of V .
De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 3 / 23



Motivations (2)

I Constraint Logic Programming (CLP) is a metalanguage for
representing
programs and their semantics,
properties and their proof rules

i.e., for representing the Verification Conditions (VCs)

Methods for proving the satisfiability of CLP/CHC VCs:
I CounterExample Guided Abstraction Refinement (CEGAR),

Interpolation, Satisfiability Modulo Theories
[Bjørner et al., Duck et al., Rybalchenko et al., Rümmer et al.]

I Symbolic execution of CLP
[Jaffar et at.]

I Static Analysis and Transformation of CLP
[Gallagher et al., Albert et al., Fioravanti et al.]

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 3 / 23



Motivations (2)

I Constraint Logic Programming (CLP) is a metalanguage for
representing
programs and their semantics,
properties and their proof rules

i.e., for representing the Verification Conditions (VCs)

I Program Transformation is a technique that
changes the syntax of a program,
preserves its semantics

i.e., for passing information between Solvers

VCs ?

safe

unsafe

VCsT ?

safe

unsafe

· · ·
SolveA Transform SolveB Transform

prop ∈ M(VCs) iff prop ∈ M(VCsT )

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 3 / 23



In this work ... (Outline of the Talk)

Verification method for program safety that combines
I Program Specialization

unfold/fold transformations + widening
I Interpolating Horn Clause (IHC) solving

top-down evaluation + interpolation

by exploiting the common Horn Clause representation of the problem.
Hence, combining the effect of interpolation to the effect of widening.
Specialization and Interpolation phases can be:
I iterated, and also
I combined with other transformations that change the direction of

propagation of the constraints:
I forward from the program preconditions, or
I backward from the error conditions.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 4 / 23



The Transformation-based Verification Method

Program transformation of Constraint Logic Programs (CLP) to:
I generate the Verification Conditions (VCs)
I prove the satisfiability of the VCs

Interpreter: Int Specification: {ϕinit} prog {¬ϕerror}

Verification Conditions: VCs
(1) Encode

into CLP

?

prog safe prog unsafe Verification method: (1);(2);(3)+

(2) Specialize Int w.r.t. prog
(generate the VCs)

(3) Propagate ϕinit or ϕerror and Analyze
(prove the satisfiability of the VCs)

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 5 / 23



Encoding Partial Correctness into CLP

Given the specification {ϕinit} prog {¬ϕerror}

Definition (The interpreter Int)
unsafe :- initConf(X), reach(X). | X satisfies ϕinit
reach(X) :- tr(X,Y), reach(Y).
reach(X) :- errorConf(X). | X satisfies ϕerror
+ clauses for tr (the semantics of the programming language)

A program prog is unsafe w.r.t. ϕinit and ϕerror
if from an initial configuration satisfying ϕinit
it is possible to reach a final configuration satisfying ϕerror .

Otherwise, program prog is safe.

Theorem
prog is safe iff unsafe 6∈ M(Int) (the least model of Int)

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 6 / 23



Encoding the Verification Problem into CLP

Given the program increment and the specification ϕ

while(∗) {
x = x + y ;
y = y + 1 ;

}

{x=1∧ y=0} increment {x≥y}

CLP encoding of program increment
A set of at(label, command) facts.
while commands are replaced by
ite and goto.
at(`0, ite(nondet, `1, `h)).
at(`1, asgn(x, plus(x, y))).
at(`2, asgn(y, plus(y, 1))).
at(`3, goto(`0)).
at(`h, halt).

CLP encoding of ϕinit and ϕerror

initConf(`0, X, Y) :- X=1, Y=0.
errorConf(`h, X, Y):- X<Y.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 7 / 23



Transforming CLP Programs

P

P1

P2

TransfP

R

R

R

R

Rule-based program transformation
I transformation rules:

R ∈ { Unfolding,
Clause Removal,
Definition,
Folding }

I the transformation rules preserve the least model:

Theorem
unsafe ∈ M(P) iff unsafe ∈ M(TransfP)

I the rules must be guided by a strategy.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 8 / 23



The Unfold/Fold Transformation Strategy

Transform(P)

TransfP = ∅;
Defs = {unsafe :- initConf(X), reach(X)};
while ∃q ∈ Defs do

% execute a symbolic evaluation step (resolution)
Cls = Unfold(q);
% remove unsatisfiable and subsumed clauses
Cls = ClauseRemoval(Cls);
% introduce new predicates (e.g., a loop invariant)
Defs = (Defs − {q}) ∪ Define(Cls);
% match a predicate definition
TransfP = TransfP ∪ Fold(Cls, Defs);

od

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 9 / 23



Generating Verification Conditions

The specialization of Int w.r.t. prog removes all references to:
I tr (i.e., the operational semantics of the imperative language)

L: goto L1;
tr(cf(cmd(L,goto(L1)),S), cf(C,S)) :- at(L1,C).

I at (i.e., the encoding of prog)

The Specialized Interpreter for increment (Verification Conditions)
unsafe :- X=1, Y=0, new1(X,Y).
new1(X,Y) :- X=X+Y, Y=Y+1, new1(X,Y).
new1(X,Y) :- X<Y.

New predicates correspond to a subset of the program points:
new1(X,Y) :- reach(cf(cmd(0,ite(...)),

[[int(x),X],[int(y),Y]])).

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 10 / 23



Proving Satisfiability of VCs (1)

Satisfiability of a set of clauses can be reduced to the standard
top-down query evaluation.

unsafe :- X=1, Y=0, new1(X,Y).
new1(X,Y) :- X=X+Y, Y=Y+1, new1(X,Y).
new1(X,Y) :- X<Y.

the recursive predicate new1,
generates an infinite derivation
for unsafe.

top-down evaluation with tabling
(i.e. memoing of partial answers)
does not terminate.

unsafe

X=1, Y=0, new1(X,Y)

7
X=1, Y=1, new1(X,Y)

7
X=2, Y=2, new1(X,Y)

7
X=4, Y=3, new1(X,Y)

7
∞

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 11 / 23



Failure Tabled CLP (FTCLP) (2)
Interpolating Horn Clause (IHC) Solver:

I interpolation provides learned facts from failure that can be
used for pruning search.

Failure Tabled CLP (FTCLP): [Navas et al.]
I an interpolating Horn Clause (IHC) Solver
I execute a set of CLP clauses top-down while labelling nodes in

the derivation tree with interpolants:
1. Whenever a loop is detected its execution stops, and it

backtracks to an ancestor choice point,
2. After completion of a subtree, the tabling mechanism will

attempt at proving that the predicate where the execution
was frozen can be subsumed by any of its ancestors using
an interpolant as the subsumption condition

3. If it fails then its execution is re-activated and the
process continues.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 12 / 23



Proving Satisfiability of VCs (3)

1. unsafe :- X=1, Y=0, new1(X,Y).
2. new1(X,Y) :- X=X+Y, Y=Y+1, new1(X,Y).
3. new1(X,Y) :- X<Y.

(a) freeze the execution
of the recursive
clause 2

unsafe

X=1, Y=0, new1(X,Y)

7

X1=Y+X, Y1=Y+1, new1(X1,Y1)

(b) learn X≥Y from the failed
derivation: X=1, Y=0, X<Y
(compute an interpolant
between X=1, Y=0 and X<Y)

(c) check if X≥Y is an
inductive invariant

Unfortunately, X≥Y, X1=X+Y, Y1=Y+1 6|= X1≥Y1

X≥Y is not an inductive invariant

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 13 / 23



Transforming Verification Conditions

Program transformation:
I propagates constraints,
I introduces predicate definitions (i.e., program invariants)

Use of generalization operators:
I to ensure the termination of the transformation,
I to generate program invariants,

... two somewhat conflicting requirements:
I efficiency, to introduce as few definitions as possible,
I precision, to prove as many properties as possible.

Generalization operators add new constraints to predicate
definitions that might make the top-down (or bottom-up)
evaluation terminating.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 14 / 23



Constraint Generalizations

Definitions are arranged as a tree:

unsafe :- i, A

· · · newp :- c, B ancestor definition

newq :- d, B candidate definition

newr :- g, B generalized definition

d → g

Generalization operators based on widening and convex-hull.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 15 / 23



Propagating the initial configuration ϕinit

The verification conditions are specialized w.r.t. ϕinit .

Specialized Verification Conditions for increment
. . . propagating the constraint X=1, Y=0.

unsafe :- X=1, Y=0, new4(X,Y).
new4(X,Y) : X=1, Y=0, X1=1, Y1=1, new5(X1,Y1).
new5(X,Y) : X=1, Y≥0, new8(X,Y).
new8(X,Y) :- X=1, X1=Y+1, X1≥1, Y1=X1, new9(X1,Y1).
new8(X,Y) :- X=1, Y≥0, new10(X,Y).
new10(X,Y) :- X=1, Y≥2.
new9(X,Y) :- X≥1, Y≥0 , new13(X,Y).
new13(X,Y) :- X1=X+Y, Y1=Y+1, new9(X1,Y1).
new13(X,Y) :- X≥1, Y≥0, new15(X,Y).
new15(X,Y) :- X≥1, X≤Y-1.

The transformation adds new constraint X≥1, Y≥0,
so that FTCLP solver terminates.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 16 / 23



Analysing the Specialized VCs
Execution of Recursive CHCs

X = 2, Y = 2 |= X ≥ Y (by definition of interpolation)
X ≥ Y, X ≥ 1, Y ≥ 0, X1 = X + Y, Y1 = Y + 1 |= X1 ≥ Y1

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 17 / 23



Discovering program invariants

Program transformation and FTCLP improve on infinite failure.
I generalization operators may discover invariants by looking at

the history of the computation
e.g., from X=1, Y=0 and X=2, Y=1 (one loop execution)
by generalization we derive X>=1, Y>=0

I interpolation discovers invariants by looking at failed
executions
e.g., from X=1, Y=0 and X<Y we derive X>=Y.

If the invariants are not strong enough to prove the correctness of
the program, we iterate the transformation process.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 18 / 23



Program Reversal

By specializing

Int:
unsafe :- initial(A), reach(A).
reach(A) :- tr(A,B), reach(B).
reach(X) :- error(A).

w.r.t. unsafe, we propagate the constraint of the initial
configuration ϕinit .

By specializing

RevInt:
unsafe :- error(A), reach(A).
reach(B) :- tr(A,B), reach(A).
reach(X) :- initial(A).

w.r.t. unsafe, we propagate the constraint of the error
configuration ϕerror .

unsafe ∈ M(Int) iff unsafe ∈ M(RevInt)
De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 19 / 23



VeriMAP

A Tool for Verifying Programs through Transformations

I CIL (C Intermediate Language) by Necula et al.
I MAP Transformation System by the MAP group

C-to-CLP
Translator

Unfold/Fold
Transformer Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

Available at: http://map.uniroma2.it/VeriMAP

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 20 / 23

http://map.uniroma2.it/VeriMAP


VeriMAP + FTCLP

The architecture of the VeriMAP tool with FTCLP.

CtoCLP
Translator

Unfold/Fold
Transformer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

FTCLP

The FTCLP solver is implemented using :
I Ciao prolog system
I MathSAT (for the interpolants generation)

Available at: http://code.google.com/p/ftclp

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 21 / 23

http://code.google.com/p/ftclp


Experimental evaluation

FTCLP VeriMAPM
VeriMAPM VeriMAPPH

VeriMAPPH
+ FTCLP + FTCLP

answers 116 128 160 178 182
crashes 5 0 2 0 0
timeouts 95 88 54 38 34
total time 12470.26 11285.77 9714.41 5678.09 6537.17
average time 107.50 88.17 60.72 31.90 35.92

Table : Verification results using VeriMAP, FTCLP, and the combination of
VeriMAP and FTCLP. The timeout limit is two minutes. Times are in seconds.

Iteration VeriMAPM
VeriMAPM VeriMAPPH

VeriMAPPH
+ FTCLP + FTCLP

1 74 119 104 136
2 45 38 54 34
3 7 2 10 5
4 2 1 8 3
5 0 0 2 4

Table : Number of definite answers computed by VeriMAP and by the combination
of VeriMAP and FTCLP within the first five iterations.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 22 / 23



Conclusions and Future Work

I Parametric verification framework (semantics and logic)
I CLP as a metalanguage
I Semantics preserving transformations to:

I iterate specialization and analysis, and
I pass information between verifiers

thereby resulting in an incremental verification process.
I We instantiated the verification framework by integrating:

I an Iterated Specialization tool (VeriMAP), and
I an Interpolating Horn Clauses Solver (FTCLP).

I Future work: combine these tools in a more synergistic way
I leverage the partial information FTCLP discovers and

integrate it into the Specialized program,
I refining the generalization step by using the interpolants

computed by FTCLP, and
I use interpolation during the transformation process.

De Angelis et al. Verification of Programs by Combining Iterated Specialization with Interpolation 23 / 23


