
  

E. De Angelis1,3

joint work with:

F. Fioravanti1,3, A. Pettorossi2,3, and M. Proietti3

1 University of Chieti-Pescara `G. d'Annunzio'
2 University of Rome `Tor Vergata'

3 CNR - Istituto di Analisi dei Sistemi ed Informatica

E. De Angelis1,3

joint work with:

F. Fioravanti1,3, A. Pettorossi2,3, and M. Proietti3

1 University of Chieti-Pescara `G. d'Annunzio'
2 University of Rome `Tor Vergata'

3 CNR - Istituto di Analisi dei Sistemi ed Informatica

Verifying relational program properties by
transforming constrained Horn clauses

Verifying relational program properties by
transforming constrained Horn clauses



  

Biosketch

 Ma
r.

 
2
01

3

Ma
y
 
2
01

0

Se
pt

.
 
20

1
0

Ja
n
.
 
20

1
1

Ja
n.

 
2
0
14

De
c
.
 
20

1
4

trainee @ Altran Italia S.p.A.

we were here
Feb. 19th 2013 
IASI@Manzoni

MSc in Computer Engineering (Univ. of Tor Vergata)

PhD student @ Univ. of Chieti-Pescara

postdoc @ Univ. of Chieti-Pescara

visiting student @ Univ. of Passau

fixed-term employee @ IASI

VeriMAP VeriMAP 2.0

Software Model Checking Verification of Software Artifacts

P
ro

g
. Syn

th
esis

Relational properties of C programs

Time-aware business processes (BPMN)

http://map.uniroma2.it/VeriMAP

?

http://map.uniroma2.it/VeriMAP


  

Relational verification

● bug fix
● new feature
● code refactoring

Proving relations between fragments of program 
versions may be easier than proving the correctness 
of the final version from scratch.



  

Example

: :

global variables of        : {x1  , z1   }        

non-tail recursive

  global variables of         : {x2  , y2  , z2  }         

iterative

z1=∑
i=0

x 1

i z 2=x 2× y2



  

Verification methods
State-of-the-art

verification condition generator

verification conditions

solver

(semi) automated

First Order (FO) formulae 
whose satisfiability 
entails the validity of  
the relational property

    automatic theorem prover for FO



  

Weakeness

specific for

…

programming 
language

properties
verification condition generator



  

Our goal & contribution 

Verification method based on

Transformation of Constrained Horn Clauses (CHCs)

● CHCs as a metalanguage for representing               and               

as a set of implications of the form

● Transformations of CHCs to compose clauses representing
the programs and the relational property

● Transformations increase the effectiveness of solvers

Achieve a higher level of parametricity with respect to

programming 
language

properties

&



  

Transformation of CHCs
A technique that

● manipulates clauses
● preserves their satisfiability

S1

CHCs 

S1 is satisfiable   iff    S2 is satisfiable

define

unfold

fold

Transformation strategy

1. CHC specialization
2. Predicate pairing

S2

Transformed CHCs 

Transformation strategies:



  

CHC solver (satisfiability provers)

Relational verification by CHC 
transformation

Interpreter for SRC
(operational semantics)

(fully automated) CHC transformer

Transformed
CHCs

CHCs

CHC encoder



  

Specifying relational 
properties using CHCs
The relational property is translated into the clause

check the validity of a relational property reduces to check the satisfiability of CHCs 

pre-relation

input/output 
relation

input/output 
relation

post-relation

CHC translation:

Relational property:



  

Interpreter (a glimpse)
Operational semantics of the programming language

input/output relation

initial C and final C' configurations 

cf(cmd(Label,Command),Environment)

x=e;



  

Interpreters &
CHC specialization

Take advantage of static information, that is,
● actual programs
● relational property 

to customize the interpreter

By specializing the interpreter w.r.t. the static input, 
we get CHCs with no references to 

● reach 
● tr 
● complex terms representing configurations



  

CHC specialization                    
             :

Interpreter

CHC transformer
(applies CHC specialization)

CHC

CHC encoder



  

Satisfiability of CHCs

● state-of-the-art solvers for CHCs with Linear Integer Arithmetic 
(LIA) are unable to prove their satisfiability
● problem: LIA solvers should discover quadratic relations 

● reasoning on        and       separately is unhelpful



  

Predicate pairing

● Solution 1: use a solver for non-linear integer arithmetic

drawback: satisfiability of constraints is undecidable

(decide satisfiability of Diophantine equations)

● Solution 2: predicate pairing transformation

● composes the predicates f  and g  into a new predicate

fg equivalent to their conjunction

● objective: discover linear relations among variables 

occurring in f and g  may help solvers in proving the

satisfiability of CHCs



  

Transformed CHCs

Predicate Pairing makes it possible to infer linear relations 

among variables in the conjunction fg of predicates f and g

The conjunction fg enforces the linear constraint

  
*

Satisfiability of CHCs

Hence the satisfiability of the first clause 



  

Verification Problems

Y 1⩽Y 2X’ Y’

Types of Verified Properties and Programs

● ITERATIVE: equivalence of two iterative programs P1, P2

                            X’=Y’ ← p1(X,X’), p2(Y,Y’), X=Y 
• RECURSIVE: equivalence of two recursive programs 

• ITERATIVE-RECURSIVE: equivalence of an iterative and 
   a recursive program

• ARRAYS: equivalence of two programs on arrays

• LEQ:                                                ← p(X,X’),  p(Y,Y’), X=Y 
• MONOTONICITY: 

• INJECTIVITY:                     X=Y ← p(X,X’),  p(Y,Y’), X’=Y’ 

• FUNCTIONALITY:           X’=Y’ ← p(X,f(X),X’), p(Y,f(Y),Y’), X=Y

Y 1⩽Y 2X’ Y’ Y 1⩽Y 2X Y← p(X,X’),  p(Y,Y’), 



  

Implementation & 
Experimental Evaluation



  

Conclusions

A method for proving relational properties

● Independent of the programming language

● The only language specific element is the interpreter
● Can be applied to prove relations between programs 

written in different programming languages

● Improves effectiveness of state-of-the art CHC solvers


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

