Verifying relational program properties by transforming constrained Horn clauses

E. De Angelis^{1,3}

joint work with:

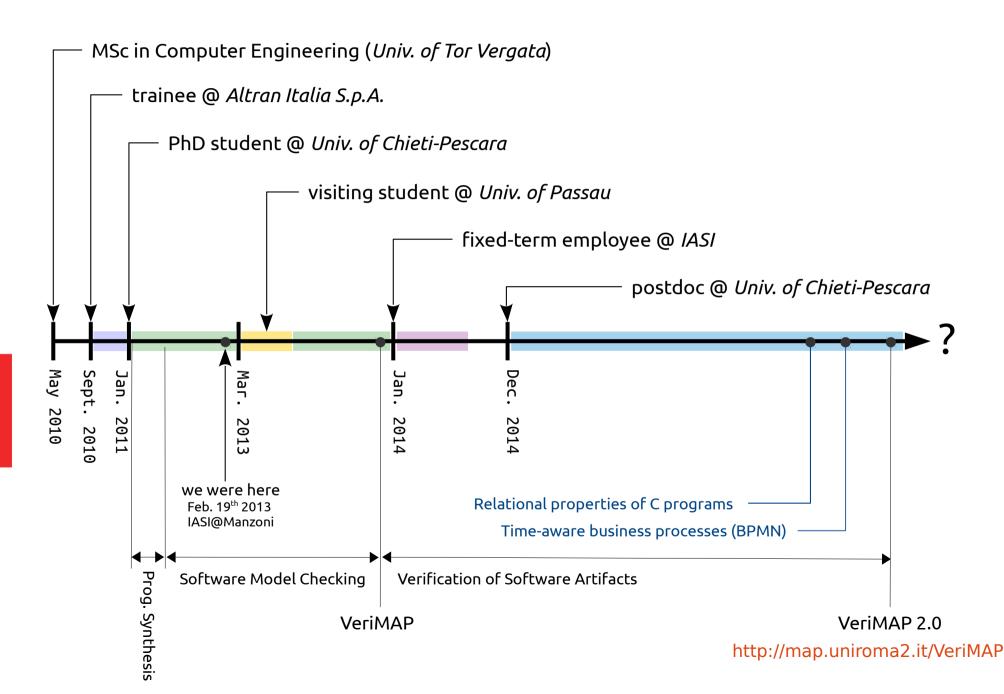
F. Fioravanti^{1,3}, A. Pettorossi^{2,3}, and M. Proietti³

¹ University of Chieti-Pescara `G. d'Annunzio'

² University of Rome `Tor Vergata'

³ CNR - Istituto di Analisi dei Sistemi ed Informatica

Biosketch



Relational verification



Proving **relations** between fragments of program versions may be easier than proving the correctness of the final version from scratch.

Example

```
P_1: void sum_upto() {
      z1=f(x1);
    int f(int n1){
      int r1;
      if (n1 <= 0) {
       r1 = 0;
      } else {
        r1 = f(n1 - 1) + n1;
      return r1;
                   non-tail recursive
```

```
P_2: void prod() {
      z2 = g(x2, y2);
    int g(int n2, int m2){
      int r2;
      r2=0;
      while (n2 > 0) {
        r2 += m2;
        n2--;
      return r2;
                       iterative
```

global variables of P_1 : {x1, z1}

$$z1 = \sum_{i=0}^{x_1} i$$

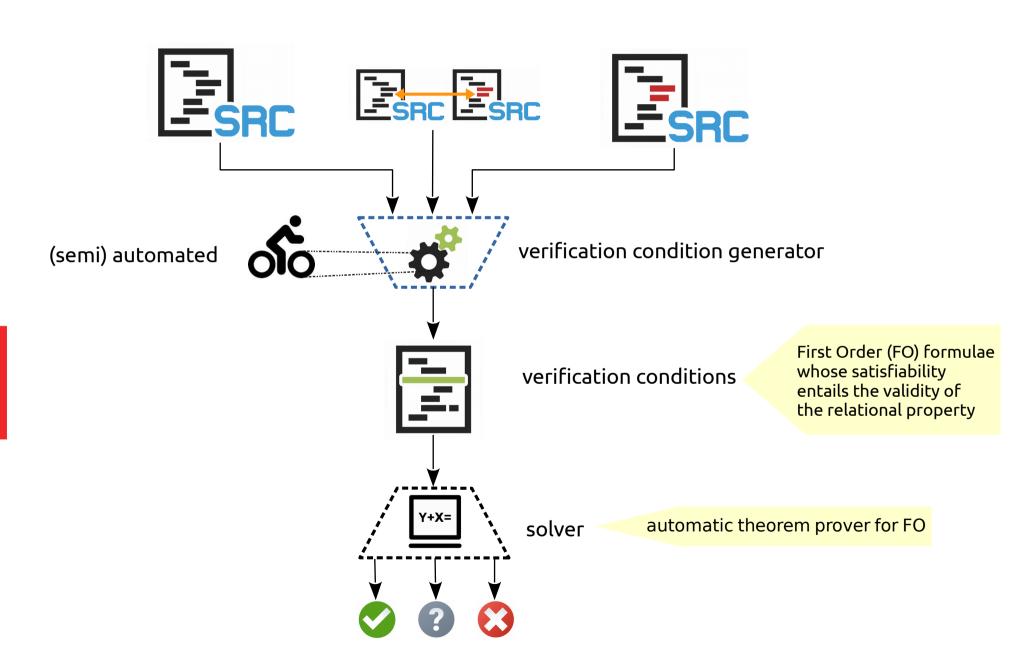
global variables of P_2 : {x2, y2, z2}

$$z = x \times y = 2 \times y =$$

 $Leq: \{x1=x2, x2 \le y2\} \text{ sum_upto} \sim \text{prod } \{z1 \le z2\}$

Verification methods

State-of-the-art

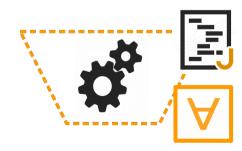


Weakeness

verification condition generator

programming language

properties



. . .

Our goal & contribution

Achieve a higher level of **parametricity** with respect to

Verification method based on Transformation of Constrained Horn Clauses (CHCs)

- CHCs as a metalanguage for representing \square and \square as a set of implications of the form $A_0 \leftarrow c, A_1, \ldots, A_n$
- Transformations of CHCs to compose clauses representing the programs and the relational property
- Transformations increase the effectiveness of solvers

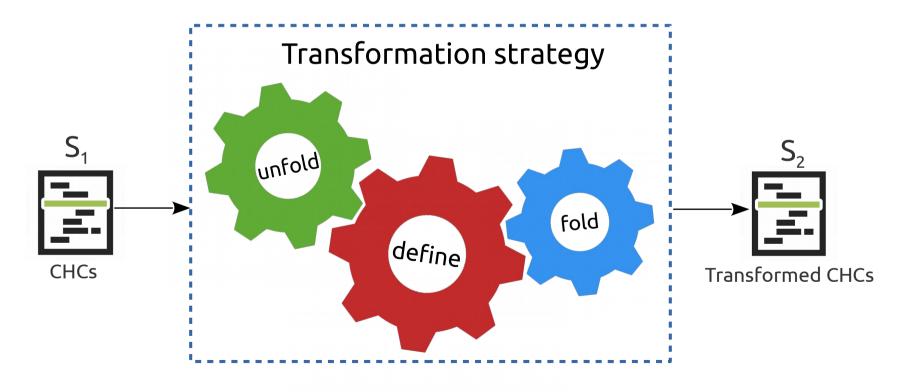
Transformation of CHCs

A technique that

- manipulates clauses
- preserves their satisfiability

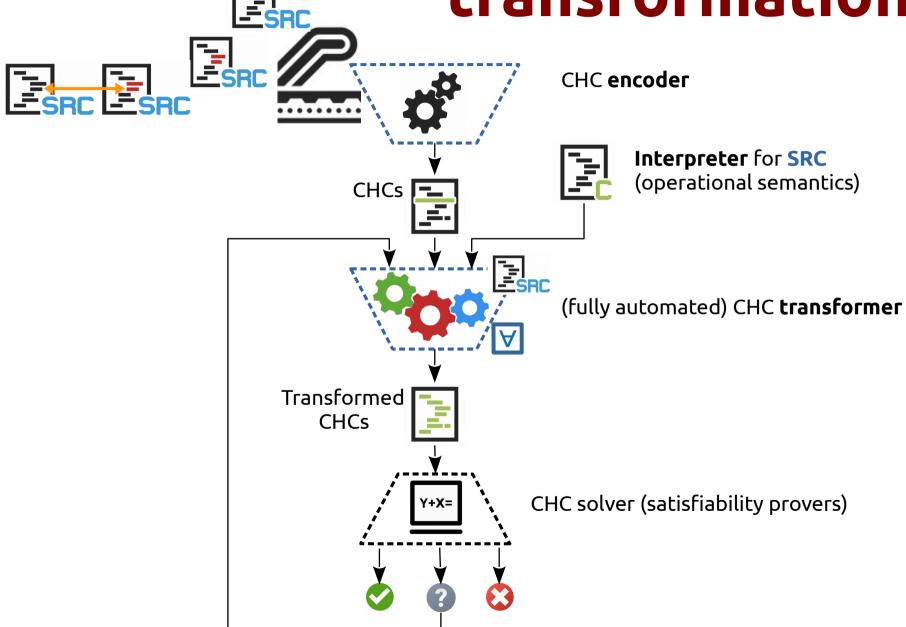
Transformation strategies:

- 1. CHC specialization
- 2. Predicate pairing



 S_1 is satisfiable *iff* S_2 is satisfiable

Relational verification by CHC transformation



Specifying relational properties using CHCs

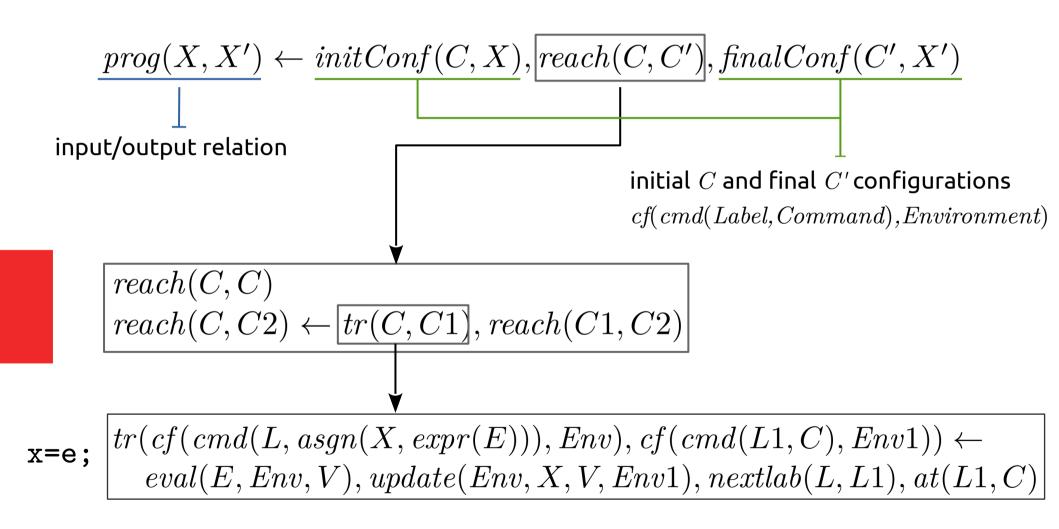
The relational property $\{\varphi\}$ $P_1 \sim P_2$ $\{\psi\}$ is translated into the clause $post(X',Y') \leftarrow pre(X,Y), p1(X,X'), p2(Y,Y')$

pre-relation	φ	pre(X, Y)
input/output relation	P_1	p1(X, X')
input/output relation	P_2	p2(Y, Y')
post-relation	ψ	post(X', Y')

check the validity of a relational property reduces to check the satisfiability of CHCs

Interpreter (a glimpse)

Operational semantics of the programming language



Interpreters & CHC specialization

Take advantage of static information, that is,

- actual programs
- relational property

to customize the interpreter

By specializing the interpreter w.r.t. the static input, we get CHCs with <u>no references to</u>

- reach
- tr
- complex terms representing configurations

CHC specialization

```
CHC encoder
 void sum_upto() {
    z1=f(x1);
                                                                       Interpreter
                                               CHC
 int f(int n1){
    int r1;
    if (n1 \le 0) {
       r1 = 0;
                                                                CHC transformer
    } else {
                                                                (applies CHC specialization)
       r1 = f(n1 - 1) + n1;
    return r1;
  su(X1,Z1') \leftarrow f(X1,Z,X1,R,N1,Z1')
\rightarrow f(X, Z, N, R, N, 0) \leftarrow N \leq 0
f(X, Z, N, R, N, Z1) \leftarrow N \ge 1, N1 = N-1, Z1 = R2 + N, f(X, Z, N1, R1, N2, R2)
```

Satisfiability of CHCs

```
 \begin{cases} \{\varphi\} \mid P_{1} \sim P_{2} \mid \{\psi\} \\ \{Z1' \leq Z2' \leftarrow X1 = X2, X2 \leq Y2, \text{ su}(X1, Z1'), p(X2, Y2, Z2') \} \\ P_{1} \begin{cases} \{Su(X1, Z1') \leftarrow f(X1, Z, X1, R, N1, Z1') \} \\ \{f(X, Z, N, R, N, 0) \leftarrow N \leq 0 \} \\ \{f(X, Z, N, R, N, Z1) \leftarrow N \geq 1, N1 = N - 1, Z1 = R2 + N, f(X, Z, N1, R1, N2, R2) \} \\ P_{2} \begin{cases} \{g(X2, Y2, Z2') \leftarrow g(X2, Y2, Z, X2, Y2, 0, N, P, Z2') \} \\ \{g(X, Y, Z, N, P, R, N, P, R) \leftarrow N \leq 0 \} \\ \{g(X, Y, Z, N, P, R, N2, P2, R2) \leftarrow N \geq 1, N1 = N - 1, R1 = P + R, n \} \\ \{g(X, Y, Z, N1, P, R1, N2, P2, R2) \end{cases}
```

- state-of-the-art solvers for CHCs with Linear Integer Arithmetic (LIA) are unable to prove their satisfiability
 - problem: LIA solvers should discover quadratic relations

$$Z1' = X1 \times (X1-1)/2$$
 $Z2' = X2 \times Y2$

ullet reasoning on su and p separately is unhelpful

Predicate pairing

- Solution 1: use a solver for non-linear integer arithmetic drawback: satisfiability of constraints is undecidable (decide satisfiability of Diophantine equations)
- Solution 2: predicate pairing transformation
 - composes the predicates f and g into a new predicate fg equivalent to their **conjunction**
 - objective: discover linear relations among variables occurring in f and g may help solvers in proving the satisfiability of CHCs

Satisfiability of CHCs

Transformed CHCs

```
Z1' \leq Z2' \leftarrow X1 \leq Y2, \ fg(X1,Z,X1,R,N1,Z1',Y2,Z,0,N2,P2,Z2') \leftarrow fg(X,Z,N,R,N,0,Y2,V,Z2,N,P2,Z2) \leftarrow N \leq 0
fg(X,Z,N,R,N,Z1,Y2,V,W,N2,P2,Z2) \leftarrow N \geq 1, \ N1=N-1, \ Z1=R2+N, \ M=Y2+W, fg(X,Z,N1,R1,S,R2,Y2,V,M,N2,P2,Z2)
```

Predicate Pairing makes it possible to infer linear relations among variables in the conjunction fg of predicates f and g

$$fg(X1,Z,N,R,N1,Z1',Y2,V,W,N2,P2,Z2') \leftarrow \\ f(X1,Z,N,R,N1,Z1'),g(X1,Y2,V,N,Y2,W,N2,P2,Z2')$$

The conjunction fg enforces the linear constraint

$$(X1 > Y2) \lor (Z1' \le Z2')$$

Hence the satisfiability of the first clause

Verification Problems

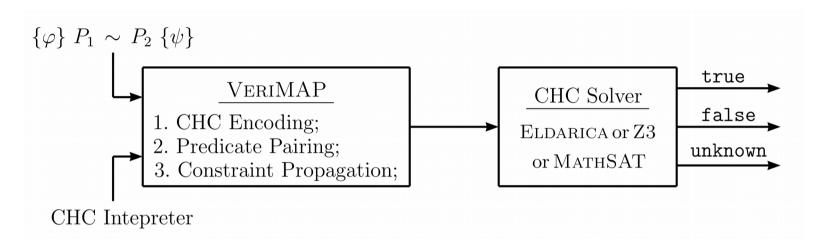
Types of Verified Properties and Programs

• ITERATIVE: equivalence of two iterative programs P1, P2

$$X'=Y' \leftarrow p1(X,X'), p2(Y,Y'), X=Y$$

- **RECURSIVE**: equivalence of two recursive programs
- ITERATIVE-RECURSIVE: equivalence of an iterative and a recursive program
- ARRAYS: equivalence of two programs on arrays
- LEQ: $X' \leq Y' \leftarrow p(X,X'), p(Y,Y'), X=Y$
- MONOTONICITY: $X' \leq Y' \leftarrow p(X,X'), p(Y,Y'), X \leq Y$
- INJECTIVITY: $X=Y \leftarrow p(X,X'), p(Y,Y'), X'=Y'$
- FUNCTIONALITY: $X'=Y' \leftarrow p(X,f(X),X'), p(Y,f(Y),Y'), X=Y$

Implementation & Experimental Evaluation



Properties	$\mid n \mid$	Enc+Eld	Enc+Z3	PP+Eld	PP+MS	PP+Z3	CP+Eld	CP+MS	CP+Z3
ITERATIVE	21	7	6	13	19	6	17	20	21
RECURSIVE	18	7	8	7	11	6	14	11	13
ITERATIVE-RECURSIVE	4	0	0	0	3	0	4	4	4
ARRAYS	5	0	1	1	1	4	2	2	5
LEQ	6	1	1	1	6	1	3	6	4
MONOTONICITY	18	4	4	11	16	8	11	17	14
INJECTIVITY	11	0	0	0	11	4	7	11	10
FUNCTIONALITY	7	5	5	6	7	5	6	7	7
Total	90	24	25	39	74	34	64	78	78
				1			A	•	1

Conclusions

A method for proving relational properties

- Independent of the programming language
 - The only language specific element is the interpreter
 - Can be applied to prove relations between programs written in different programming languages
- Improves effectiveness of state-of-the art CHC solvers