VeriMAP

A Tool for Verifying Programs
through Transformations

Emanuele De Angelis, Fabio Fioravanti,
Alberto Pettorossi, and Maurizio Proietti

University of Chieti — Pescara ‘G. d'Annunzio’,
University of Rome ‘Tor Vergata’, and
IASI — CNR of Rome

Milano, 26 September 2014

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

What is VeriMAP?

@ a tool for the verification of safety properties of C programs
manipulating integers and integer arrays

@ based on Constraint Logic Programs (CLP) as a metalanguage
for representing:

o the operational semantics of the C language
o the proof rules for safety

o the C program to be verified

o the safety property to be checked

@ satisfiability preserving transformations of CLP programs for:

e generating Verification Conditions
e checking their satisfiability

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Tool Architecture

Iterated Verifier unknown
CIL Interpreter ¢ J
© Prog_»ram C-to-CLP »(Verification Unfold/Fold Anal truelfal se
Property |l Translator Conditions Transformer > Anayzer
‘—> _Generator

Proof Rules ﬁ ﬁf

Transformation Strategies

Constraint Domain - _— ;
h—> Unfolding | Generalization | Constraint Replacement
DataTheory || Operators Operators Solvers Rules

Available at http://map.uniroma2.it/VeriMAP/

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Verification of Safety Properties

Given the specification {@jnit} CProg {1}, define @error = —1

int x, y, n;
while(x<n) { Initial and error properties
init(x,y,0) =x=0Ay=0An>0

x=x+1;
Perror(X,y,0) = y>2x

y=y+2;

A program is incorrect w.r.t. Qinit and Yerror iff from an initial
configuration satisfying jn;+ it is possible to reach a final
configuration satisfying @error-

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Step 1: C-to-CLP - Translating C programs into CLP

Construct the CLP encoding of
@ the C Program CProg as a set of facts at (Label, Command)

o the Property (@init, Perror) as constrained facts

Iterated Verifier unknown
CIL Interpreter ¢
c ngraml C-to-CLP L» Verifi_cgtion Unfold/Fold Analyzer true/fal se
Property »| Conditions Transformer
perty _II Translator
) ~_Generator
Proof Rules ﬁ
Transformation Strategies
Constraint DOMaig | ™ g ding || Generalization| Constraint | Replacement
DataTheory || Operators Operators Solvers Rules

VeriMAP: A Tool for Verifying Programs through Transformations

De Angelis, Fioravanti

C-to-CLP translator

@ First the C program is preprocessed using CIL.
e while's and for's are translated into equivalent commands that use

if-else's and goto's.

@ Then, for each program command, C-to-CLP generates a CLP fact of
the form at(L,C), where C and L represent the command and its label.

1. 4o : if (x<n) goto /¢;; 1. at(10,ite(less(x,n),11,1h)).

else goto fy; 2. at(11,asgn(x,expr(plus(x,1)),12)).
2. 01 x=x+1; 3. at(12,asgn(y,expr(plus(y,2)),13)).
3. Uy y=y+2; 4. at(13,goto(10)).
4. 03 : goto ly; 5. at(lh,halt).
5. f,: halt;

V.

@ Also facts for the initial and error properties are generated:

phiInit(cf(...,[(x,X),(y,V),(n,N)])) :- X=0, Y=0, N>=0.
phiError(cf (..., [(x,X),(y,Y),(n,N)])) :- Y>2xX.

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

The CLP interpreter Int

Proof rules for safety

incorrect :- initial(X), phiInit(X), reach(X).
reach(X) :- tr(X,Y), reach(Y).
reach(X) :- final(X), phiError(X).

Operational semantics of the programming language

tr(cf(Labl,Cmdl),cf(Lab2,Cmd2)) :— ---)

e.g., operational semantics of the conditional command
L:if (Expr) { | tr(cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :

Li: ... beval (Expr,S), expression is true
} at(L1,C). next command
else tr(cf(cmd(L,ite(Expr,L1,L2)),S), c£(C,S)) :-

L2: ... beval (not (Expr),S), expression is false
} at(L2,C). next command

Correctness of Encoding:
CProg is correct iff incorrect € M(Int) (the least model of Int)

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Step 2: Generating Verification Conditions

Generate the Verification Conditions (VCs) by specializing
the CLP interpreter Int (CIL Interpreter + Proof Rules) w.r.t.
the CLP encoding of the C program CProg .
All references to

@ tr (operational semantics of the C language)

@ at (encoding of the C program CProg)
are removed.

Iterated Verifier unknown
CIL Interpreter L
c ng"aml C-to-CLP L» Verifi_cgtion Unfold/Fold Analvzer true/fal se
Property »| Conditions Transformer 7 y
perty _II Translator
\ ™ Generator

Proof Rules ﬁ ﬁ
Transformation Strategies

Constraint Domaig Unfolding | Generalization | Constraint Replacement

DaaTheory || Operators Operators Solvers Rules

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Rule-based Program Transformation

@ transformation rules:
R R € { Definition,
Unfolding,
Folding,
lR Clause Removal,
Constraint Replacement }

@ the transformation rules

R
l change the syntax of a program
' preserve its least model semantics.

R incorrect € M(P) iff incorrect € M(TransfP)

@ the rules are guided by a strategy.

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Step 3: Transforming the VCs

Transform the VCs by propagating either
@ the constraint encoded by phiInit (jnit) or

@ the constraint encoded by phiError (©Yerror)

|terataj Verlfle’ unknown
CIL Interpreter ¢ J
C Program C-to-CLP _, fVerifi_c:_;\tion Unfold/Fold Analvzer truelfal se
Propety || Tranglator Conditions Transformer y
™ >_Generator

Proof Rules ﬁ ﬁf

Transformation Strategies

Constraint Domai Unfolding | Generdlization | Constraint Replacement

DaaTheory || Operators Operators Solvers Rules

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Step 4: Checking satisfiability of the VCs

Analyze the CLP program representing the transformed VCs

@ CProg correct if no constrained facts appear in the VCs.

@ CProg incorrect if the fact incorrect. appears in the VCs.

|terataj Verlfle’ unknown

CIL Interpreter ¢ J
C Program C-to-CLP _,/Verifipgtion Unfold/Fold Andlvzer truelfal se
Property Trangator Conditions Transformer Y

™ >_Generator
Proof Rules ﬁ ﬁf
Transformation Strategies
Constrant DOMaR | ™y ¢y ging || Generalization | Constraint | Replacement
DataTheory || Operators Operators Solvers Rules

De Angelis, Fioravanti

VeriMAP: A Tool for Verifying Programs through Transformations

Iterating VCs Transformation (3-4)

Precision achieved by iteration:
@ reverse the direction of the state-space exploration

@ transform and analyze

(i.e., alternate the propagation of @jnir and Yerror)

Iterated Verifier unknown)
CIL Interpreter ¢
C Program C-to-CLP _, Verifi.cation Unfold/Fold o Anaivzer true/fal se
Property || Trangator | Conditions Transformer y
— ™ *>_Generator

Proof Rules ﬁ ﬁf

Transformation Strategies

Constraint Domaig Unfolding | Generalization | Constraint Replacement
DaaTheory || Operators Operators Solvers Rules

VeriMAP: A Tool for Verifying Programs through Transformations

De Angelis, Fioravanti

Verification Framework

Program prog
Step (0) Translate Prog tSOO‘érfS € (written in L)

and ¢ into CLP Translator Specification ¢
(specified in M)

Initial CLP Program T

Interpreter Int

ol Verification | — (Semantics of L
Step (1) Specialize Int w.r.t. T Condition (Semanti)

(Removal of the Interpreter) Generator |€——— (Semantics of M)

Verification Conditions (VC's) V

Step (2) Transform verification Unfold/Fold
conditions w.r.t. ¢ Transformer

Transformed VC's S

unknown
Step (3) Check whether or Analyzer +
not ¢ holds in Q VC's S
true false

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Experimental Evaluation - Integer Programs

216 examples taken from: DAGGER, TRACER, InvGen, and TACAS 2013
Software Verification Competition.

VeriMAP ARMC HSF(C) TRACER

1 | correct answers 185 138 160 103
2 safe problems 154 112 138 85
3 unsafe problems 31 26 22 18
4 | incorrect answers 0 9 4 14
5 false alarms 0 8 3 14
6 missed bugs 0 1 1 0
7 | errors 0 18 0 22
8 | timed-out problems 31 51 52 77
9 | total time 10717.34 15788.21 15770.33 23259.19
10 | average time 57.93 114.41 98.56 225.82

@ ARMC [Podelski, Rybalchenko PADL 2007]
@ HSF(C) [Grebenshchikov et al. TACAS 2012]
@ TRACER [Jaffar, Murali, Navas, Santosa CAV 2012]

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

CLP with array constraints

Array constraints
e read(a,i,v)
the i-th element of array a is v
e write(a,i,v,b)
array b is equal to array a except that its i-th element is v
@ dim(a,n)
the dimension of a is n

Theory of Arrays

Array congruence

(AC) I=17J, read(A,I,U), read(A,J,V) — U=V

V.

Read-over-Write

(RoW1) I=J, write(A,I,U,B), read(B,J,V) — U=V
(RoW2) 1437, write(A,I,U,B), read(B,J,V) — read(a,J,V)

<

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Experimental evaluation - Array Programs

Program GenWJm GenHyE GenHym GenH,Lg GenHl,@
bubblesort-inner 0.9 unknown unknown unknown 1.52
copy-partial unknown unknown 3.52 3.51 3.54
copy-reverse unknown unknown 5.25 unknown 5.23
copy unknown unknown 5.00 4.88 4.90
find-first-non-null 0.14 0.66 0.64 0.28 0.27
find 1.04 6.53 2.35 2.33 2.29
first-not-null 0.11 0.22 0.22 0.22 0.22
init-backward unknown 1.04 1.04 1.03 1.04
init-non-constant unknown 2.51 2.51 2.47 2.47
init-partial unknown 0.9 0.89 0.9 0.89
init-sequence unknown 4.38 4.33 4.41 4.29
init unknown 1.00 0.97 0.98 0.98
insertionsort-inner 0.58 2.41 2.4 2.38 2.37
max unknown unknown 0.8 0.81 0.82
partition 0.84 1.77 1.78 1.76 1.76
rearrange-in-situ unknown unknown 3.06 3.01 3.03
selectionsort-inner unknown time-out unknown 2.84 2.83
verified 6 10 15 15 17
total time 3.61 21.42 34.76 31.81 38.45
average time 0.60 2.14 2.31 2.12 2.26

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Ongoing and Future Work

VeriMAP is an instance of a general transformation-based

Verification Framework, which is parametric w.r.t.

@ the language of the programs to be verified, and

@ the logic of the property to be checked.

Experimenting with:
@ other properties (e.g., CTL)
@ integration with other tools and techniques (e.g., CEGAR)

Extending the interpreter to deal with:
e dynamic data structures (e.g., heaps)
@ recursive functions (e.g., big step semantics)
@ other programming language features (e.g., concurrency)

@ an assertion specification language

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

Thank you!

http://map.uniroma2.it/VeriMAP/

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations

