
VeriMAP
A Tool for Verifying Programs

through Transformations

Emanuele De Angelis, Fabio Fioravanti,
Alberto Pettorossi, and Maurizio Proietti

University of Chieti – Pescara ‘G. d’Annunzio’,
University of Rome ‘Tor Vergata’, and

IASI – CNR of Rome

Milano, 26 September 2014

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



What is VeriMAP?

a tool for the verification of safety properties of C programs
manipulating integers and integer arrays

based on Constraint Logic Programs (CLP) as a metalanguage
for representing:

the operational semantics of the C language
the proof rules for safety
the C program to be verified
the safety property to be checked

satisfiability preserving transformations of CLP programs for:
generating Verification Conditions
checking their satisfiability

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Tool Architecture

C-to-CLP
Translator

Unfold/Fold
Transformer Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

Available at http://map.uniroma2.it/VeriMAP/

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Verification of Safety Properties

Given the specification {ϕinit} CProg {ψ}, define ϕerror ≡ ¬ψ

int x, y, n;

while(x<n) {
x=x+1;

y=y+2;

}

Initial and error properties
ϕinit(x,y,n) ≡ x=0 ∧ y=0 ∧ n≥0
ϕerror (x,y,n) ≡ y>2x

A program is incorrect w.r.t. ϕinit and ϕerror iff from an initial
configuration satisfying ϕinit it is possible to reach a final
configuration satisfying ϕerror .

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Step 1: C-to-CLP - Translating C programs into CLP

Construct the CLP encoding of
the C Program CProg as a set of facts at(Label,Command)

the Property 〈ϕinit , ϕerror 〉 as constrained facts

C-to-CLP
Translator

Unfold/Fold
Transformer

Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



C-to-CLP translator

First the C program is preprocessed using CIL.
while’s and for’s are translated into equivalent commands that use
if-else’s and goto’s.

Then, for each program command, C-to-CLP generates a CLP fact of
the form at(L, C), where C and L represent the command and its label.

1. `0 : if (x<n) goto `1;
else goto `h;

2. `1 : x=x+1;
3. `2 : y=y+2;
4. `3 : goto `0;
5. `h : halt;

1. at(l0,ite(less(x,n),l1,lh)).
2. at(l1,asgn(x,expr(plus(x,1)),l2)).
3. at(l2,asgn(y,expr(plus(y,2)),l3)).
4. at(l3,goto(l0)).
5. at(lh,halt).

Also facts for the initial and error properties are generated:

phiInit(cf(. . . ,[(x,X),(y,Y),(n,N)])) :- X=0, Y=0, N>=0.
phiError(cf(. . . ,[(x,X),(y,Y),(n,N)])) :- Y>2*X.

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



The CLP interpreter Int
Proof rules for safety

incorrect :- initial(X), phiInit(X), reach(X).
reach(X) :- tr(X,Y), reach(Y).
reach(X) :- final(X), phiError(X).

Operational semantics of the programming language

tr(cf(Lab1,Cmd1),cf(Lab2,Cmd2)) :- · · ·

e.g., operational semantics of the conditional command
L: if(Expr) { tr( cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :-

L1: . . . beval(Expr,S), expression is true
} at(L1,C). next command
else tr( cf(cmd(L,ite(Expr,L1,L2)),S), cf(C,S)) :-

L2: . . . beval(not(Expr),S), expression is false
} at(L2,C). next command

Correctness of Encoding:
CProg is correct iff incorrect 6∈ M(Int) (the least model of Int)
De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Step 2: Generating Verification Conditions

Generate the Verification Conditions (VCs) by specializing
the CLP interpreter Int (CIL Interpreter + Proof Rules) w.r.t.
the CLP encoding of the C program CProg .
All references to

tr (operational semantics of the C language)
at (encoding of the C program CProg)

are removed.

C-to-CLP
Translator

Unfold/Fold
Transformer

Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Rule-based Program Transformation

P

P1

P2

TransfP

R

R

R

R

transformation rules:
R ∈{Definition,

Unfolding,
Folding,
Clause Removal,
Constraint Replacement }

the transformation rules

change the syntax of a program
preserve its least model semantics.
incorrect∈M(P) iff incorrect∈M(TransfP)

the rules are guided by a strategy.

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Step 3: Transforming the VCs

Transform the VCs by propagating either
the constraint encoded by phiInit (ϕinit) or
the constraint encoded by phiError (ϕerror )

C-to-CLP
Translator

Unfold/Fold
Transformer

Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Step 4: Checking satisfiability of the VCs

Analyze the CLP program representing the transformed VCs

CProg correct if no constrained facts appear in the VCs.
CProg incorrect if the fact incorrect. appears in the VCs.

C-to-CLP
Translator

Unfold/Fold
Transformer

Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Iterating VCs Transformation (3 – 4)

Precision achieved by iteration:

reverse the direction of the state-space exploration
transform and analyze

(i.e., alternate the propagation of ϕinit and ϕerror )

C-to-CLP
Translator

Unfold/Fold
Transformer

Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Verification Framework

Source
to CLP

Translator
Step (0) Translate Prog

and ϕ into CLP +

Program prog
(written in L)
Specification ϕ
(specified in M)

Verification
Condition
Generator

(Semantics of L)
(Semantics of M)

Interpreter Int
Step (1) Specialize Int w.r.t. T

(Removal of the Interpreter)

Unfold/Fold
Transformer

Step (2) Transform verification
conditions w.r.t. ϕ

AnalyzerStep (3) Check whether or
not ϕ holds in Q

true false

Initial CLP Program T

Verification Conditions (VC’s) V

Transformed VC’s S
unknown

+
VC’s S

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Experimental Evaluation - Integer Programs

216 examples taken from: DAGGER, TRACER, InvGen, and TACAS 2013
Software Verification Competition.

VeriMAP ARMC HSF(C) TRACER
1 correct answers 185 138 160 103
2 safe problems 154 112 138 85
3 unsafe problems 31 26 22 18
4 incorrect answers 0 9 4 14
5 false alarms 0 8 3 14
6 missed bugs 0 1 1 0
7 errors 0 18 0 22
8 timed-out problems 31 51 52 77

9 total time 10717.34 15788.21 15770.33 23259.19
10 average time 57.93 114.41 98.56 225.82

ARMC [Podelski, Rybalchenko PADL 2007]
HSF(C) [Grebenshchikov et al. TACAS 2012]
TRACER [Jaffar, Murali, Navas, Santosa CAV 2012]

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



CLP with array constraints
Array constraints

read(a, i, v)
the i-th element of array a is v

write(a, i, v, b)
array b is equal to array a except that its i-th element is v

dim(a, n)
the dimension of a is n

Theory of Arrays

Array congruence

(AC) I=J, read(A, I, U), read(A, J, V) → U=V

Read-over-Write
(RoW1) I=J, write(A, I, U, B), read(B, J, V) → U=V
(RoW2) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Experimental evaluation - Array Programs

Program GenW,I,e GenH,V,⊆ GenH,V,e GenH,I,⊆ GenH,I,e

bubblesort-inner 0.9 unknown unknown unknown 1.52
copy-partial unknown unknown 3.52 3.51 3.54
copy-reverse unknown unknown 5.25 unknown 5.23
copy unknown unknown 5.00 4.88 4.90
find-first-non-null 0.14 0.66 0.64 0.28 0.27
find 1.04 6.53 2.35 2.33 2.29
first-not-null 0.11 0.22 0.22 0.22 0.22
init-backward unknown 1.04 1.04 1.03 1.04
init-non-constant unknown 2.51 2.51 2.47 2.47
init-partial unknown 0.9 0.89 0.9 0.89
init-sequence unknown 4.38 4.33 4.41 4.29
init unknown 1.00 0.97 0.98 0.98
insertionsort-inner 0.58 2.41 2.4 2.38 2.37
max unknown unknown 0.8 0.81 0.82
partition 0.84 1.77 1.78 1.76 1.76
rearrange-in-situ unknown unknown 3.06 3.01 3.03
selectionsort-inner unknown time-out unknown 2.84 2.83
verified 6 10 15 15 17
total time 3.61 21.42 34.76 31.81 38.45
average time 0.60 2.14 2.31 2.12 2.26
De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Ongoing and Future Work

VeriMAP is an instance of a general transformation-based
Verification Framework, which is parametric w.r.t.

the language of the programs to be verified, and
the logic of the property to be checked.

Experimenting with:
other properties (e.g., CTL)
integration with other tools and techniques (e.g., CEGAR)

Extending the interpreter to deal with:
dynamic data structures (e.g., heaps)
recursive functions (e.g., big step semantics)
other programming language features (e.g., concurrency)
an assertion specification language

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations



Thank you!

http://map.uniroma2.it/VeriMAP/

De Angelis, Fioravanti VeriMAP: A Tool for Verifying Programs through Transformations


